Опубликовано

Устройства плавного пуска электродвигателя

Чем помогает УПП

Во время запуска двигателя крутящиеся механизмы способны в два раза превышать номинальное значение, образуя пусковые токи, в несколько раз превосходящий средние рабочие показатели.

Подобные перезагрузки чреваты многими осложнениями:

  • Сильный перегрев;
  • Порча изоляции обмоток;
  • Срыв транспортерных лент;
  • Неисправность кинематической цепи;
  • Тяжелый пуск;
  • Остановка мотора.

Устройство плавного пуска электродвигателя в разы сглаживает механические рывки и гидравлические удары, обеспечивая постепенное нарастание мощности и стабильную работу мотора. Недаром второе название прибора — софтстартер, что в переводе с английского означает «мягкий старт».

На представленных фото устройства плавного пуска видно, что внешне механизм выглядит как набор схем и проводов, защищенных металлическим и пластмассовым корпусом. На самом же деле в основе прибора коммутационная аппаратура, тормозные колодки, блокираторы, противовесы и другие элементы, способные стабилизировать работу электрического двигателя.

Также механизм обладает и дополнительным функционалом:

  • Обеспечивает плавное торможение;
  • Защищает от короткого замыкания;
  • Предотвращает возможный обрыв фазы;
  • Исключает незапланированный самостоятельный пуск мотора;
  • Не допускает превышения номинальных рабочих значений;
  • Позволяет подобрать источник питания меньшей мощности;
  • Понижает расход энергии;
  • Экономит средства на эксплуатации и ремонте машины;
  • Снижает электромагнитные помехи.

Когда УПП необходимо

Некоторые машины не сразу дают понять, что нуждаются в сглаживающем механизме, однако чем раньше будет настроен плавный запуск, тем дольше и качественнее прослужит вся система. К сожалению, чаще всего задумываются о подключении УПП только тогда, когда сам двигатель говорит о губительности пусковых процессов. Чтобы понять это достаточно уловить одну из самых распространенных «показательных» ситуаций:

Источник питания не справляется со слишком тяжелым пуском. Например, сеть не способна выдавать требуемые мощности или обеспечивает выработку на максимальных уровнях функционирования, лампочки отключаются, срабатывают автоматические выключатели, отказываются запускаться некоторые контакторы, реле, генератор.

Запуску двигателя препятствуют защитные системы, срабатывая на превышение допустимых нагрузок. При отличном запуске пакетник «срабатывает» до достижения необходимой частоты.

Чтобы не допустить выхода электродвигателя из строя, рекомендуется как можно скорее настроить плавность запуска и торможения системы. Сделать это несложно, так как даже новичку под силу выбрать, установить и подключить устройство плавного пуска своими руками.

Как выбрать софстартер

Вопрос, как выбрать устройство плавного пуска, возникает довольно часто, ведь подбирается механизм под конкретный электродвигатель и источник питания.

Чтобы не ошибиться с параметрами и возможностями, рекомендуется обращать внимание на следующие показатели:

  • Максимальное значение тока, вырабатываемого мотором при самых высоких нагрузках;
  • Наибольшее число запусков в один час;
  • Номинальное напряжение на питающей системе;
  • Способность контролировать и ограничивать вырабатываемый ток;
  • Возможность шунтирования — отключения питающего блока от цепи, чтобы исключить перегрев и возгорание;
  • Количество фаз (две — компактнее и дешевле, три — надежнее и долговечнее при частых запусках);
  • Цифровое или аналоговое управление.

Главное, чтобы выдвигаемые к софтстартеру требования соответствовали с критериями, условиями работы, мощностью двигателя и номинальным значениям сети. Помогут в выборе и сводные таблицы, расчетные алгоритмы, предлагаемыми многими поставщиками для более удобного и качественного поиска подходящего прибора.

Принцип работы пускателя

Он заключается в том, что устройство регулирует напряжение, приложенное к двигателю во время пуска, контролируя характеристики тока. Для асинхронных двигателей пусковой момент приблизительно пропорционален квадрату пускового тока. Он пропорционален приложенному напряжению. Крутящий момент также можно считать приблизительно пропорциональным приложенному напряжению, таки образом регулируя напряжение во время пуска, ток, потребляемый машиной, и его крутящий момент контролируются устройством и могут быть уменьшены.

Используя шесть SCR в конфигурации, как показано на рисунке устройство плавного пуска может регулировать напряжение, подаваемое на двигатель при запуске от 0 вольт до номинального линейного напряжения. Плавный пуск электродвигателя может осуществляться тремя способами:

  1. Прямой запуск с применение полного напряжения нагрузки.
  2. Применяя постепенно пониженное.
  3. Применение пуска частичной обмотки с помощью стартёра автотрансформатора.

УПП могут быть двух типов:

  1. Открытое управление: напряжение пуска подаётся с задержкой во времени независимо от тока или скорости двигателя. Для каждой фазы два SCR проводятся сначала с задержкой на 180 градусов в течение соответствующих полуволновых циклов (для которых выполняется каждый SCR). Эта задержка постепенно уменьшается со временем до тех пор, пока приложенное напряжение не достигнет номинального значения. Она также известна, как система временного напряжения. Этот метод фактически не контролирует ускорение двигателя.
  2. Контроль замкнутого контура: контролируются любые характеристики выходного сигнала двигателя, такие как текущий ток или скорость. Пусковое напряжение изменяется соответственно для получения требуемого отклика. Таким образом, задачей УПП является контроль угла проводимости SCR и управление напряжением питания.

Основы SCR

SCR (Silicon Controlled Rectifier) представляет собой управляемый стабилизатор мощности постоянного тока с высокой мощностью. Устройства плавного пуска асинхронных двигателей SCR представляет собой четырехслойное кремниевое полупроводниковое устройство PNPN. Оно имеет три внешних терминала и использует альтернативные символы на рисунке 2 (a) и имеет транзисторную эквивалентную схему на рисунке 2 (b).​

Основной способ использования SCR в качестве переключателя с анодом, положительным относительно катода, управляемым в момент запуска машины.

Основные характеристики SCR можно понять с помощью этих диаграмм. Устройство плавного пуска электродвигателя можно включить и заставить действовать как выпрямитель с прямым смещением кремния, кратковременно применяя к нему ток затвора через S2. SCR быстро (в течение нескольких микросекунд) автоматически защёлкивается во включённое состояние и остаётся включённым даже при удалении привода затвора.

Это действие показано на рисунке 2 (b) ток начального затвора включается Q1, а ток коллектора Q1 включается Q2, ток коллектора Q2 затем удерживает Q1, даже когда привод затвора удаляется. Потенциал насыщения составляет 1 В или около того и создаётся между анодом и катодом.

Для включения SCR требуется только короткий импульс затвора. Как только SCR будет зафиксирован, он может быть снова отключён, кратковременно уменьшая его ток анода ниже определённого значения, как правило, несколько миллиампер, в приложениях АС выключение происходит автоматически в точке пересечения нуля в каждом полупериоде.

Значительный коэффициент усиления доступен между затвором и анодом SCR, а низкие значения тока затвора (обычно несколько мА или меньше) могут контролировать высокие значения анодного тока (до десятков усилителей). Большинство SCR имеют анодные номиналы в сотни вольт. Характеристики затвора SCR аналогичны характеристикам транзисторного соединения — эмиттера транзистора (см. Рис. 2 (b)).

Внутренняя ёмкость (несколько pF) существует между анодом и затвором SCR, и резко возрастающее напряжение, появляющееся на аноде, может вызвать достаточный прорыв сигнала к затвору для включения SCR. Этот «эффект скорости» может быть вызван переходными процессами на линии питания и т. д. Проблемы с эффектом скорости можно преодолеть, проводя сеть сглаживания CR между анодом и катодом, чтобы ограничить скорость подъёма до безопасного значения.

Операция с переменной скоростью вращения

Сетевое напряжение переменного тока (рис. 5) выпрямляется с помощью пассивного диодного моста. Это означает, что диоды срабатывают, когда линейное напряжение больше напряжения на секции конденсатора. Результирующая форма волны имеет два импульса в течение каждого полупериода, по одному для каждого окна диодной проводимости.

Форма волны показывает некоторый непрерывный ток, когда проводимость переходит от одного диода к следующему. Это типично, когда он используется в звене постоянного тока привода и присутствует некоторая нагрузка. Инверторы используют широко-импульсную модуляцию для создания выходных сигналов. Треугольный сигнал генерируется на несущей частоты, с которой инвертор IGBT переключится.

Эта форма сигнала сравнивается с синусоидальной формой волны на основной частоте, которая должна быть доведена до двигателя. Результатом является волновая форма U, показанная на рисунке.

Выход инвертора может быть любой частотой ниже или выше частоты линии до пределов инвертора и/или механические пределы двигателя. Нужно обратить внимание на то, что привод всегда работает в пределах рейтинга скольжения двигателя.

Процесс регулирования пуска

Сроки включения SCR — это ключ к управлению выходом напряжения для УПП. В течение пуска логическая схема УПП определяет, когда включить SCR. Он не включает SCR в точке, где напряжение идёт от отрицательного к положительному, но ждёт некоторое время после этого. Это известный процесс, называемый как «постепенное восстановление» SCR. Точка включения SCR установлена или запрограммирована тем, что начальный крутящий момент, начальный ток или ограничение тока строго регулируется.

Результат поэтапного восстановления SCR представляет собой несинусоидальное пониженное напряжение на выводах двигателя, которое показано на рисунках. Поскольку двигатель является индуктивным, а ток отстаёт от напряжения, SCR остаётся включённым и проводит, пока ток не достигнет нуля. Это происходит после того, как напряжение стало отрицательным. Выход напряжения индивидуального SCR.

Если сравнивать с формой полного напряжения, можно видеть, что пиковое напряжение совпадает с полным волновым напряжения. Однако ток не увеличивается до того же уровня, что и при приложении полного напряжения из-за индуктивного характера двигателей. Когда это напряжение подаётся на двигатель, выходной ток выглядит, как на рисунке.

Поскольку частота напряжения равна так же, как и линейная, частота тока тоже одинакова. SCR поэтапно переходят к полной проводимости, пробелы в токе заполняются до тех пор, пока волновая форма не будет выглядеть так же, как у двигателя.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *