Опубликовано

Усиление магнитного поля

Получено рекордно сильное магнитное поле

Существует несколько различных способов создать мощное магнитное поле, обычно они связаны с резким сжатием проводящего тела. Самые сильные когда-либо созданные человеком поля были получены методом сжатия при помощи взрывчатки. Такой способ можно применять только на открытых пространствах, и годится он лишь для демонстрации, так как такой процесс протекает неконтролируемым образом. Абсолютный рекорд при помощи этого метода ученые поставили в 2001 году, когда смогли создать поле с индукцией 2800 Тл в объеме размером около 5 миллиметров.

В новой работе физики смогли впервые получить поле свыше 1000 Тл в условиях лаборатории, что позволяет проводить с ним эксперименты. Они использовали метод электромагнитного сжатия потока, при котором сдавливание достигается за счет электромагнитных сил, вызванных протеканием огромного тока. Максимальная индукция, которую измерили ученые, составила порядка 1200 Тл.

Такое поле, в частности, может пригодиться для исследования квантовых фаз вещества, так как подобные поля должны переводить все электроны в металлах в низшее энергетическое состояние. Также поля подобной силы нужны для того, чтобы поддерживать термоядерную реакцию с выделением энергии в реакторах некоторых конструкций.

Понравился материал? Добавьте Indicator.Ru в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Сверхсильные импульсные магнитные поля

Что такое сверхсильные магнитные поля?

В науке для познания природы в качестве инструментов используются различные взаимодействия и поля. В ходе физического эксперимента исследователь, воздействуя на объект исследования, изучает отклик на это воздействие. Анализируя его, делают заключение о природе явления. Наиболее эффективным средством воздействия является магнитное поле, так как магнетизм – широко распространенное свойство веществ.

Силовой характеристикой магнитного поля является магнитная индукция. Далее приводится описание наиболее распространенных методов получения сверхсильных магнитных полей, т.е. магнитных полей с индукцией свыше 100 Тл (тесла).

Для сравнения ­–

  • минимальное регистрируемое с помощью сверхпроводящего квантового интерферометра (СКВИД) магнитное поле – 10-13 Тл;
  • магнитное поле Земли – 0,05 мТл;
  • сувенирные магниты на холодильник – 0,05 Тл;
  • альнико (алюминий-никель-кобальт) магниты (AlNiCo) – 0,15 Тл;
  • ферритовые постоянные магниты (Fe2O3) – 0,35 Тл;
  • самариево-кобальтовые постоянные магниты (SmCo) — 1,16 Тл;
  • самые сильные неодимовые постоянные магниты (NdFeB) – 1,3 Тл;
  • электромагниты Большого адронного коллайдера – 8,3 Тл;
  • самое сильное постоянное магнитное поле (Национальная лаборатории сильных магнитных полей Флоридского университета) – 36,2 Тл;
  • самое сильное импульсное магнитное поле, достигнутое без разрушения установки (Лос-Аламосская национальная лаборатория, 22 марта 2012 года) – 100,75 Тл.


В настоящее время исследования в области создания сверхсильных магнитных полей проводятся в странах – участниках «Megagauss Club» и обсуждаются на Международных конференциях по генерации мегагауссных магнитных полей и родственным экспериментам (гаусс – единица измерения магнитной индукции в системе СГС, 1 мегагаусс = 100 тесла).

Для создания магнитных полей такой силы необходима очень большая мощность, поэтому в настоящее время их получение возможно только в импульсном режиме, причем длительность импульса не превышает десятков микросекунд.

Разряд на одновитковый соленоид

Самым простым методом получения сверхсильных импульсных магнитных полей с магнитной индукцией в диапазоне 100…400 тесла является разряд ёмкостных накопителей энергии на одновитковые соленоиды (соленоид — это однослойная катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра).

Внутренний диаметр и длина используемых катушек обычно не превышают 1 см. Индуктивность их мала (единицы наногенри), поэтому для генерации в них сверхсильных полей требуются токи мегаамперного уровня. Их получают с помощью высоковольтных (10-40 киловольт) конденсаторных батарей с низкой собственной индуктивностью и запасаемой энергией от десятков до сотен килоджоулей. При этом время нарастания индукции до максимального значения не должно превышать 2 микросекунды, иначе разрушение соленоида произойдет раньше, чем будут достигнуто сверхсильное магнитное поле.

Деформация и разрушение соленоида объясняются, что из-за резкого возрастания тока в соленоиде существенную роль играет поверхностный («скин») эффект — ток концентрируется в тонком слое на поверхности соленоида и плотность тока может достигать очень больших величин. Следствием этого является возникновение в материале соленоида области с повышенными температурой и магнитным давлением. Уже при индукции 100 тесла поверхностный слой катушки, выполненный даже из тугоплавких металлов, начинает плавиться, а магнитное давление превышает предел прочности большинства известных металлов. С дальнейшим ростом поля область плавления распространяется вглубь проводника, а на его поверхности начинается испарение материала. В итоге происходит взрывообразное разрушение материала соленоида («взрыв скин-слоя»).

Если же величина магнитной индукции превышает значение 400 тесла, то такое магнитное поле обладает плотностью энергии, сравнимой с энергией связи атома в твёрдых телах и намного превышает плотность энергии химических взрывчатых веществ. В зоне действия такого поля происходит, как правило, полное разрушение материала катушки со скоростью разлета материала витка до 1 километра в секунду.

Метод сжатия магнитного потока (магнитная кумуляция)

Для получения максимального магнитного поля (до 2800 Тл) в условиях лаборатории применяется метод сжатия магнитного потока (магнитная кумуляция).

Внутри проводящей цилиндрической оболочки (лайнера) с радиусом r0 и сечением S0 создается аксиальное стартовое магнитное поле с индукцией B0 и магнитным потоком Ф = B0S0 и. Затем лайнер симметрично и достаточно быстро сжимается внешними силами, при этом его радиус уменьшается до rf и площадь сечения до Sf. Пропорционально площади сечения уменьшается и магнитный поток, пронизывающий лайнер. Изменение магнитного потока в соответствии с законом электромагнитной индукции вызывает возникновение в лайнере индуцированного тока, создающего магнитное поле, стремящееся компенсировать уменьшение магнитного потока. При этом магнитная индукция соответственно увеличивается до значения Bf=B0*λ*S0/Sf, где λ – коэффициент сохранения магнитного потока.

Метод магнитной кумуляции реализован в устройствах, получивших название магнитокумулятивных (взрывомагнитных) генераторов. Сжатие лайнера осуществляется давлением продуктов взрыва химических взрывчатых веществ. Источником тока для создания начального магнитного поля служит конденсаторная батарея. Основоположниками исследований в области создания магнитокумулятивных генераторов были Андрей Сахаров (СССР) и Кларенс Фоулер (США).

В одном из опытов в 1964 году на магнитокумулятивном генераторе МК-1 в полости диаметром 4 мм удалось зарегистрировать рекордное поле 2500 Тл. Однако неустойчивость магнитной кумуляции явилась причиной невоспроизводимого характера взрывной генерации сверхсильных магнитных полей. Стабилизация процесса магнитной кумуляции возможна при сжатии магнитного потока системой последовательно включаемых коаксиальных оболочек. Такие устройства называют каскадными генераторами сверхсильных магнитных полей. Их основное достоинство заключается в том, что они обеспечивают стабильность работы и высокую воспроизводимость сверхсильных магнитных полей. Многокаскадная конструкция генератора МК-1, использующая 140 кг взрывчатого вещества, обеспечивающих скорость сжатия лайнера до 6 км/с, позволила получить в 1998 году в Российском федеральном ядерном центре рекордное в мире магнитное поле 2800 тесла в объеме 2 см3. Плотность энергии такого магнитного поля более чем в 100 раз превышает плотность энергии самых мощных химических взрывчатых веществ.

Применение сверхсильных магнитных полей

Начало использованию сильных магнитных полей в физических исследованиях было положено трудами советского физика Петра Леонидовича Капицы в конце 1920-х годов. Сверхсильные магнитные поля применяются в исследованиях гальваномагнитных, термомагнитных, оптических, магнитно-оптических, резонансных явлений.

Они применяются, в частности:

  • для исследования эффекта Фарадея (эффект Фарадея – поворот на угол β плоскости поляризации линейно поляризованного светового луча, проходящего через изотропную среду, находящуюся в магнитном поле);
  • для исследования эффекта Зеемана (эффект Зеемана — расщепление энергетических уровней и спектральных линий атомов под воздействием магнитного поля)
  • для изучения свойств веществ в экстремальных условиях, так как энергия магнитного поля напряжённостью 1000…1500 Тл превышает энергию связи частиц в твёрдых телах, а магнитное давление превышает давление в центре Земли. Это может быть использовано, например, для сжатия водорода. В химических реакциях, отдавая электрон, водород ведет себя как металл, но для полноценного металла водороду не хватает кристаллической решетки. Существует предположение, что при температурах, приближенных к абсолютному нулю, и давлении в миллионы атмосфер, возможно образование кристаллической решетки водорода с удивительными свойствами, например, сверхпроводимостью;
  • в оружии электромагнитного импульса (ЭМИ).

Электромагнитное поле и его влияние на здоровье человека

1. Что такое ЭМП, его виды и классификация

2. Основные источники ЭМП

2.1 Электротранспорт

2.2 Линии электропередач

2.3 Электропроводка

2.7 Сотовая связь

2.8 Радары

2.9 Персональные компьютеры

3. Как действует ЭМП на здоровье

4. Как защититься от ЭМП

На практике при характеристике электромагнитной обстановки используют термины «электрическое поле», «магнитное поле», «электромагнитное поле». Коротко поясним, что это означает и какая связь существует между ними.

Электрическое поле создается зарядами. Например, во всем известных школьных опытах по электризации эбонита, присутствует как раз электрическое поле.

Магнитное поле создается при движении электрических зарядов по проводнику.

Для характеристики величины электрического поля используется понятие напряженность электрического поля, обозначение Е, единица измерения В/м . Величина магнитного поля характеризуется напряженностью магнитного поля Н, единица А/м . При измерении сверхнизких и крайне низких частот часто также используется понятие магнитная индукция В, единица Тл, одна миллионная часть Тл соответствует 1,25 А/м.

По определению, электромагнитное поле — это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами. Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле Е порождает магнитное поле Н, а изменяющееся Н — вихревое электрическое поле: обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами. При ускоренном движении заряженных частиц, ЭМП «отрывается» от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника .

Электромагнитные волны характеризуются длиной волны, обозначение — l . Источник, генерирующий излучение, а по сути создающий электромагнитные колебания, характеризуются частотой, обозначение — f.

Важная особенность ЭМП — это деление его на так называемую «ближнюю» и «дальнюю» зоны. В «ближней» зоне, или зоне индукции, на расстоянии от источника r 3l. В «дальней» зоне интенсивность поля убывает обратно пропорционально расстоянию до источника r -1.

В «дальней» зоне излучения есть связь между Е и Н: Е = 377Н, где 377 — волновое сопротивление вакуума, Ом. Поэтому измеряется, как правило, только Е. В России на частотах выше 300 МГц обычно измеряется плотность потока электромагнитной энергии , или вектор Пойтинга. Обозначается как S, единица измерения Вт/м2. ППЭ характеризует количество энергии, переносимой электромагнитной волной в единицу времени через единицу поверхности, перпендикулярной направлению распространения волны.

Международная классификация электромагнитных волн по частотам

Наименование частотного диапазона

1. Вадим описывал более 4-х лет назад практический пример схождения кольцеобразных волн на примитивном для понимания броске спасательного круга на воду. от источника расходились волны и соственно сходились .Были теоретически необоснованные попытки создания электромагнитной оболочки выдуманной «темпомашины». откровенно есть у него дальновидные зёрна ,интуитивные,недопонятые пока.

2. Направление физики построенно на 3-х мерном представлении что не верно.

3. Как бы не казалось парадоксальным, время вспять возможно. но с дальнейшим другим изменённым течением.

4.Скорость времени неодинакова.

5.ОТНОСИТЕЛЬНОСТЬ -пространство и время для данного мира и человечества -мерило скорости света, далее другой мир. другие скорости, другие законы. Так же в уменьшение.

6. «Большой Взрыв » около 14 миллиардов световых лет всего лишь несколько мгновений в другом мире, в другом течении, времени, что для человечества 5 минут — для других миров — миллиарды лет.

7.Бесконечная вселенная для ДРУГИХ — как невидимая квантовая частица и наоборот.

Совет 3: Что такое электромагнитное поле

Внедрение новых технологий и повсеместное использование электричества привело к появлению искусственных электромагнитных полей, которые чаще всего вредно воздействуют на человека и окружающую среду. Эти физические поля возникают там, где имеются движущиеся заряды.

Природа электромагнитного поля

Электромагнитное поле представляет собой особый вид материи. Оно возникает вокруг проводников, по которым движутся электрические заряды. Состоит такое силовое поле из двух самостоятельных полей – магнитного и электрического, которые не могут существовать в отрыве одно от другого. Электрическое поле при возникновении и изменении неизменно порождает магнитное.

Одним из первых природу переменных полей в середине XIX века стал исследовать Джеймс Максвелл, которому и принадлежит заслуга создания теории электромагнитного поля. Ученый показал, что движущиеся с ускорением электрические заряды создают электрическое поле. Изменение его порождает поле магнитных сил.

Источником переменного магнитного поля может стать магнит, если привести его в движение, а также электрический заряд, который колеблется или движется с ускорением. Если заряд перемещается с постоянной скоростью, то по проводнику течет постоянный ток, для которого характерно постоянное магнитное поле. Распространяясь в пространстве, электромагнитное поле переносит энергию, которая зависит от величины тока в проводнике и частоты излучаемых волн.

Воздействие электромагнитного поля на человека

Уровень всех электромагнитных излучений, которые создают сконструированные человеком технические системы, во много раз превышает естественное излучение планеты. Это поле характеризуется тепловым эффектом, что может привести к перегреву тканей организма и необратимым последствиям. К примеру, длительное пользование мобильным телефоном, который является источником излучения, может привести к повышению температуры головного мозга и хрусталика глаза.

Электромагнитные поля, возникающие при использовании бытовой техники, могут стать причиной появления злокачественных новообразований. В особенности это относится к детскому организму. Длительное нахождение человека вблизи источника электромагнитных волн снижает эффективность работы иммунной системы, ведет к заболеваниям сердца и сосудов.

Конечно, полностью отказаться от использования технических средств, которые являются источником электромагнитного поля, нельзя. Но можно применять самые простые меры профилактики, например, использовать сотовый телефон только с гарнитурой, не оставлять шнуры приборов в электрических розетках после использования техники. В быту рекомендуется применять удлинители и кабели, имеющие защитное экранирование.

если поле нужно для намагничивание чего-либо, то этот кусок материала подлежащего намагничеванию надо включать в магнитопровод. т.е. берем замкнутый стальной сердечник, в нем делаем проем длинной с тот материал который нам надо намагнитить, вставляет этот материал в получившийся проем, таким образом мы распиленый магнитопровод снова замкнули. поле пронизывающее твой материал буде очень однородным.

Как создать электромагнитное поле

Электромагнитное поле не возникает само по себе, оно излучается каким-либо прибором или предметом. Прежде, чем собрать такой прибор, необходимо понять сам принцип появления поля. Из названия несложно понять, что это совокупность магнитного и электронного полей, которые способны порождать друг друга при определенных условиях. Понятие ЭМП ассоциируется с именем ученого Максвелла.

Исследователи из Лаборатории сильных магнитных полей в Дрездене установили новый мировой рекорд, создав самое сильное магнитное поле, полученное искусственным путем. Используя двухслойную катушку индуктивности, весом в 200 килограмм и размерами, сопоставимыми с размерами обычного ведра, им удалось получить в течение нескольких десятков миллисекунд магнитное поле по величине равное 91.4 тесла. В качестве справки приведем, что предыдущий рекорд в этой области составлял 89 тесла, державшийся много лет, который был установлен исследователями из Национальной лаборатории в Лос-Аламосе, США.

91 тесла — это невероятно мощное магнитное поле, обычные мощные электромагниты, используемые в промышленной и бытовой технике, вырабатывают магнитное поле, не превышающее 25 тесла. Получение магнитных полей запредельных величин требует особых подходов, такие электромагниты изготавливаются специальным образом для того, что бы они смогли обеспечить беспрепятственное прохождение большого количества энергии и остаться при этом в целости и сохранности. Известно, что электрический ток, протекающий через катушку индуктивности, производит магнитное поле, но это магнитное поле взаимодействует с электронами в проводнике, отталкивая их в обратном направлении, т.е. создает электрическое сопротивление. Чем большее магнитное поле производится электромагнитом, тем большее отталкивающее воздействие на электроны возникает в проводниках катушки. И при достижении некоторого предела это воздействие может привести к полному разрушению электромагнита.

Для того, что бы воспрепятствовать саморазрушению катушки под воздействием собственного магнитного поля, немецкие ученые «одели» витки катушки в «корсет» из гибкого и прочного материала, наподобие того, который используется в бронежилетах. Такое решение дало ученым в руки катушку, способную без разрушения вырабатывать магнитное поле силой в 50 тесла в течение двух сотых долей секунды. Следующий их шаг был вполне предсказуем, к первой катушке они добавили еще одну катушку из 12 слоев, так же заключенную в «корсет» из волокна. Вторая катушка способна выдерживать магнитное поле в 40 тесла, но суммарное магнитное поле от двух катушек, полученное с помощью некоторых ухищрений, по значению превысило порог в 90 тесла.

Но люди все-таки нуждаются в очень сильных магнитах. Более мощные магнитные поля, имеющие точную заданную форму, позволяют лучше изучать и измерять некоторые свойства новых материалов, которые постоянно изобретаются и создаются учеными. Поэтому этот новый мощнейший электромагнит был оценен по достоинству некоторыми учеными в области материаловедения. Исследователи из HZDR уже получили заказы на шесть таких электромагнитов, которые они должны изготовить в течение следующих нескольких лет.

Шампольон – гениальный лингвист

Жан Франсуа Шампольон – это гениальный французский лингвист, который дал ключ к расшифровке египетских иероглифов. Шампольон, несомненно, …

Стили интерьера

Когда Вы въезжаете в новый дом с высокими потолками, ровными стенами и не скрипучими полами, здесь есть, где …

Гелиос – бог солнца

Яркое, ослепляющее своим светом, солнце… Поднимая взор в небо, мы совсем не задумываемся, а какие тайны оно в …

Бородинское сражение

Бородинское сражение – крупнейшее сражение Отечественной войны 1812 года между русской и французской армиями — состоялось …

История Троянской войны. Яблоко из сада Гесперид

История Троянской войны началась го­раздо раньше, чем в момент смертельной схватки противников на поле брани. Эта …

Пятое солнце

Когда люди снова заселили землю, они еще не видели солнца. Тогда боги решили создать пятое солнце. Они собрали …

Прозрачные солнечные батареи

Прозрачные транзисторы и оптоэлектроника, созданные исследователями из Государственного Университета штата Орегон и компании Hewlett Packard , нашли …

  • Битва на Куликовом поле

  • Ахурамазда и Има

Совет 1: Как сделать магнитное поле

Облагородить дачный участок можно не только покупными декоративными элементами, но и поделками, изготовленными самостоятельно, ими могут стать, например, пчелы из бутылок.
Необходимые инструменты и материалы
Для того чтобы изготовить пчел для приусадебного участка, следует запастись пластиковыми бутылками, клеем, красками, изолентой и проволокой. Окрасить поделку можно акриловыми красками, так как они довольно легко наносятся, быстро сохнут, не выгорают и не смываются. А вот то, что они не имеют неприятного стойкого запаха, позволит заняться изготовлением пчел совместно с детьми. Изолента должна быть черной, а в качестве клея можно использовать «Момент». Пуговицы следует применить в качестве глаз для поделки, этот элемент можно позаимствовать у старых игрушек, которые давно пылятся на чердаке.
Технология изготовления пчел
Если в арсенале мастера прозрачные бутылки, то их для начала можно покрыть желтой краской. Как только слой краски высохнет, можно сделать полоски на теле пчелы, оклеив бутылку изолентой, полосы следует расположить на равном расстоянии друг от друга. А вот если полосы на теле пчелы нарисовать черной краской, то им не будет страшен дождь.
Как только тело оказалось готово, можно приступать к декору насекомого. Для этого ближе к пробке следует нарисовать глаза, более реалистично они станут смотреться, если использовать глаза от старых игрушек. Носик можно окрасить в черный цвет. А если пробку проткнуть и поместить в полученное отверстие проволоку, то она станет имитировать жало. Усики можно сделать таким же образом, проткнув бутылку ближе к пробке, в эти отверстия тоже необходимо вставить отрезки проволоки.
Осталось подготовить крылья, сделать это можно несколькими способами. Первый вариант предполагает использование прозрачной бутылки. Из нее следует вырезать крылья и укрепить на теле пчелы через прорези. Второй вариант предусматривает изготовление крыльев из проволоки. Из нее следует свить крылья и обернуть остатки проволоки вокруг поделки.
Изготовить можно несколько пчел, которые могут иметь крылья разной формы и размера. Пчел можно укрепить в цветнике или в саду, продев в нижнюю часть тел насекомых проволоку, с ее помощью насекомые станут удерживаться над поверхностью земли. Другой конец проволоки следует вогнать в грунт. Пчел можно укрепить на деревьях и кустах с помощью тесьмы, обернутой вокруг их тел.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *