Опубликовано

Трансформатор тока как подключить

Содержание

  1. Общие требования

Схемы подключения счетчиков через трансформаторы можно разделить на две группы: полукосвенного и косвенного включения.

При схеме полукосвенного включения, счетчик включается в сеть только через трансформаторы тока (ТТ). Такая схема, как правило, применяется для средних и крупных предприятий которые питаются от сети 0,4кВ и имеют присоединенную нагрузку свыше 100 Ампер.

При схеме косвенного включения, счетчик включается в сеть через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН). Такие схемы применяются, как правило, для крупных предприятий имеющих на своем балансе трансформаторные подстанции и другое высоковольтное оборудование которое питается от сети выше 1кВ.

Счетчик трансформаторного включения имеет 10 либо 11 выводов:

Как видно на картинке выше выводы №1, 3, 4, 6, 7 и 9 используются для подключения токовых цепей (от трансформаторов тока), а выводы №2, 5, и 8 — для подключения цепей напряжения (от трансформаторов напряжения — при косвенной схеме включения либо напрямую от сети — при полукосвенном включении). 10 вывод, как и 11 (при его наличии), служит для подключения нулевого проводника к счетчику.

В соответствии с п. 1.5.16. ПУЭ класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5.

Кроме того в соответствии с п.1.5.23. ПУЭ цепи учета (цепи от трансформаторов до счетчика) следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки. При этом токовые цепи должны выполняться сечением не менее 2,5 мм2 по меди и не менее 4 мм2 по алюминию (п.3.4.4 ПУЭ), а сечение и длина проводов и кабелей в цепях напряжения счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения (п. 1.5.19. ПУЭ). (Как правило цепи напряжения выполняются тем же сечением, что и токовые цепи)

Как было написано выше цепи учета необходимо выводить на сборки зажимов или испытательные блоки, так что же представляет из себя испытательный блок?

Испытательный блок или испытательная коробка представляет из себя сборку зажимов предназначенных для подключения электросчетчика и обеспечивающих возможность удобного и безопасного проведения работ со счетчиком:

ВАЖНО! Винты для закорачивания первых выводов токовых цепей обязательно должны быть вкручены при семипроводной схеме подключения и выкручены при десятипроводной схеме.

Перемычки для закорачивания токовых цепей должны быть замкнуты только на время монтажа и проведения других работ со счетчиком, в рабочем положении перемычки должны быть разомкнуты!

  1. Подключения счетчика через трансформаторы тока

Как уже было написано выше при напряжении сети 0,4 кВ (380 Вольт) и нагрузках свыше 100 Ампер применяются схемы полукосвенного включения счетчика, при которой цепи напряжения подключаются к счетчику напрямую, а токовые цепи подключаются через трансформаторы тока:

Существуют следующие схемы подключения счетчиков через трансформаторы: десятипроводные, семипроводные и с совмещенными цепями (может использоваться только при полукосвенном включении). Разберем каждую из схем в отдельности:

2.1 Десятипроводная схема

Принципиальная десятипроводная схема подключения счетчика через трансформаторы тока:

Фактически десятипроводная схема будет иметь следующий вид:

Преимущества десятипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Высокая надежность. Учет по каждой фазе собирается независимо друг от друга. В случае нарушения цепей учета по одной из фаз работа учета на других фазах не нарушается.

Недостатки десятипроводной схемы:

  1. Большой расход проводника, для сборки вторичных цепей учета.

2.2 Семипроводная схема

Принципиальная семипроводная схема подключения электросчетчика через трансформаторы тока:

Фактически семипроводная схема будет иметь следующий вид:

Преимущества семипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Экономия проводника, для сборки вторичных цепей учета за счет объединения вторичных токовых цепей.

Недостатки семипроводной схемы:

  1. Низкая надежность. В случае нарушения совмещенной токовой цепи электроэнергия не учитывается ни по одной из фаз.

2.3 Схема с совмещенными цепями

Принципиальная схема подключения электросчетчика через трансформаторы тока с совмещенными цепями.

При данной схеме цепи напряжения объединяются с токовыми цепями путем установки перемычек на трансформаторах от контакта Л1 к контакту Л2.

Фактически схема с совмещенными цепями будет иметь следующий вид:

Схема с совмещенными цепями не соответствует требованиям действующих правил и в настоящее время не применяется, однако она все еще встречается в старых электроустановках.

3. Подключение счетчика через трансформаторы тока и напряжения

В случае необходимости организации учета электрической энергии в сети выше 1000 Вольт применяется схема косвенного включения счетчика при которой токовые цепи подключаются к счетчику через трансформаторы тока, а цепи напряжения подключаются через трансформаторы напряжения:

>
Однофазная и трехфазная электрическая сеть

class=»eliadunit»>

Однофазное электрическое питание

Однофазное электропитание запитывает потребителя от одной фазной линии и линии нулевого рабочего провода. Линии для однофазного питания называют однофазными электрическими сетями. Номинальное рабочее напряжение однофазных электрических сетей составляет 220 вольт.

Сами однофазные сети тоже можно разделить в зависимости от рабочих проводников.

Однофазная двухпроводная сеть

В однофазных двухпроводных сетях для электропитания используются два провода: фазного(L) и нулевого (N). Такая электрическая сеть не предусматривает заземление электроприборов. Двухпроводная электрическая сеть была да и остается самой распространенной в старом жилом фонде.

Если у вас дома проводка выполнена проводами с алюминиевыми жилами, скорее всего у вас двухпроводная электрическая сеть.

Пример схемы: однофазная двухпроводная сеть в квартире

class=»eliadunit»>

Однофазная трехпроводная сеть

В однофазных трехпроводных сетях используются три провода: фазного(L), нулевого (N) и защитного, заземляющего. Третий заземляющий провод предназначен для дополнительной защиты человека от поражений электрическим током. Соединение заземляющего провода с корпусами электроприборов (заземление), позволяет отключать электропитание при замыкании фазного провода на корпус прибора (короткого фазного замыкания). Обозначается PE.

Заземление защищает не только человека от поражений электротоком, но и спасает сами электроприборы от перегораний.

Пример схемы:однофазная трехпроводная сеть в квартире

Трехфазное электрическое питание

При трехфазном питании в электрощит квартиры или ВРУ дома заводится три питающие фазы(L1;L2;L3) и нулевой рабочий проводник(N). Номинальное рабочее напряжение между любыми фазными проводами составляет 380 вольт. Напряжение между любым фазным проводом и рабочим нулем составляет 220 вольт. От электрощита проводка, распределяется по квартире или дому, согласно схеме электропроводки, обеспечивая 220 вольтовое или з80 вольтовое питание для электроприборов.

При расчете трехфазной электросети важно правильно распределить нагрузку между тремя фазами. Неравномерное распределение нагрузки между фазами приведут к перекосу фаз, сильный перекос фаз приведет к аварийной ситуации вплоть до обгорания одной из фаз.

Распределить трехфазное питание по квартире или дому можно электрокабелями с четырьмя или пятью проводами

Трехфазная четырехпроводная электрическая сеть

При четырехпроводной электропроводки электропитание происходит от трех фазных проводов и рабочего нуля. От электрощитка или распределительной коробки проводка распределяется по розеткам и светильникам двумя проводами: каждым фазным и нулевым(L1-N; L2-N; L3-N).Напряжением 220 вольт. На схемах фазы могут обозначаться А, В, С.

Пример схемы: трехфазная четырехпроводная сеть в квартире

Трехфазная пятипроводная электрическая сеть

В трехфазной пятипроводной электрической сети «появляется» пятый заземляющий провод, выполняющий защитные функции. Обозначается (PE)

Важно! Во всех трехфазных сетях важно равномерное распределение нагрузки (потребляемой мощности) между фазами. Опредилять нагрузку сети при трехфазном питании нельзя по основному закону электротехники, зокону Ома. Для расчетов нужно учитывать коэффициент мощности(cosф) и коэффициент спроса (Кспроса). Обычно для квартир cosф=0,90-0,93;Кспроса=0,8. Значение 0,8 принимается, если потребителей более 5.

Пример схемы:трехфазная пятипроводная сеть в квартире

Нормативные ссылки

Правила Устройства Электроустановок(ПУЭ),издание 7.

Другие статьи раздела: Электрические сети

  • Автоматы защиты
  • Виды опор линий электропередачи по материалу
  • Виды опор по назначению
  • Воздушные линии электропередачи проводами СИП
  • Деревянные опоры воздушных линий электропередачи
  • Железобетонные опоры линий электропередачи
  • Железобетонные опоры линий электропередачи
  • Защита человека от поражения электрическим током, прямое и косвенное прикосновение
  • Как получает электроэнергию потребитель низкого напряжения 380 Вольт
  • Конструкции опор линий электропередачи

Счётчики для однофазных и трёхфазных сетей рассчитаны на номинальные токи до 100 А. Использование приборов с большими возможностями затруднено по причине необходимости использования проводов слишком большого сечения. Таким образом, для измерения характеристик в линиях с большими токами необходимо использовать специальные устройства, понижающие ток до приемлемого значения. Для этой цели счётчики подключаются через трансформаторы тока (ТТ).

Первичная обмотка включается последовательно в линейный провод, по которому проходит высокий ток, а ко вторичной обмотке подключается измерительный прибор. Для удобства выводы маркируются обозначениями. Для начала и, соответственно, конца первичной обмотки применяются обозначения Л1 и Л2. Для вторичной обмотки — И1 и И2. При подключении необходимо строго соблюдать полярность первичной и вторичной обмоток ТТ.

Чаще всего величина вторичного тока равна 5 А, иногда применяются ТТ со вторичным током 1 А. Для измерения же напряжения в высоковольтных сетях используется подключение через трансформатор напряжения, который понижает напряжение до 100 или 57.7 вольт.

Измерительные трансформаторы вносят свою погрешность в измерения. Здесь важно соблюдать правильную схему подключения с соблюдением обозначений. Например, если изменить местами выводы вторичных цепей И1 и И2, то за этим последует существенный недоучёт электроэнергии. Трансформаторы тока подключаются в трёхфазных цепях по схеме неполной звезды (сети с изолированной нейтралью). При наличии нулевого провода подключение осуществляется с помощью полной звезды. В дифференциальных защитах силовых трансформаторов ТТ подключаются по схеме «Треугольник».

Это позволяет скомпенсировать сдвиг фаз вторичных токов, что уменьшит ток небаланса. В трёхфазных сетях без нулевого провода обычно трансформаторы тока подключаются только на две ведущие линии, поскольку измерив ток в двух фазах, можно легко рассчитать величину тока в третьей фазе.

Если сеть имеет глухозаземлённую нейтраль (как правило, сети 110 кВ и выше), то обязательно подключение ТТ ко всем трём фазам. Соединение обмоток реле и трансформаторов тока в полную звезду. Эта схема соединения трансформаторов представлена в виде векторных диаграмм, которые иллюстрируют работу трансформатора на рис. 2.4.1 и на схемах 2.4.2, 2.4.3, 2.4.4.

Если трансформатор работает в нормальном режиме, или если он симметричный, то будет проходить ток небаланса или небольшой ток, который появляется из–за разных погрешностей трансформаторов тока.

Представленная выше схема применяется против всех видов КЗ (междуфазных и однофазных) во время включения защиты.
Трехфазное КЗ
Двухфазное КЗ

Однофазное КЗ
Отношение Iр/Iф (ток в реле)/ (ток в фазе) называется коэффициентом схемы, его можно определить для всех схем соединения. Для данной схемы коэффициент схемы kсх будет равен 1.

На рис. 2.4.5 предоставлена схема соединения обмоток реле и трансформаторов тока в неполную звезду, а на рис. 2.4.6, 2.4.7. ее векторные диаграммы, которые иллюстрируют работу этой схемы.

Трехфазное КЗ — когда токи могут идти в обратном проводе по обоим реле.
Двухфазное КЗ — когда токи, могут протекать в одном или в двух реле в соответствии с повреждением тех или иных фаз.

КЗ фазы В одной фазы может происходить тогда, когда токи не появляются в этой схеме защиты.


Схему неполной звезды можно применять только в сетях с нулевыми изолированными точками при kсх=1 с целью защиты от КЗ междуфазных, и может реагировать только на некоторые случаи КЗ однофазного.

На рис. 2.4.8. можно изучить схему соединения в звезду и треугольник обмоток реле и трансформаторов соответственно.

Во время симметричных нагрузок в реле и в период возникновения трехфазного КЗ может проходить линейный ток, сдвинутый на 30* по фазе относительно тока фазы и в разы больше его.

Особенности схемы этого соединения:

  1. при разных всевозможных видах КЗ проходят токи в реле, при этом защита которая построена по такой схеме, будет реагировать на все виды КЗ;
  2. ток в реле относится к фазному току в зависимости от вида КЗ;
  3. ток нулевой последовательности, который не имеет путь через обмотки реле для замыкания, не может выйти за границы треугольника трансформаторов тока.

Выше приведенная схема применяется чаще всего для дистанционной или во время дифференциальной защиты трансформаторов.

СО-И446 счетчик однофазный, СССР

Электрический счетчик однофазный индукционный СО-И446. Назначение данного прибора всем нашим согражданам известно. Данный экземпляр изготовлен в 1988 году, тем не менее, такие счетчики все еще работают и будут работать долго — потому что здесь мы имеем дело с тем самым советским качеством, о котором нынешние поколения понятия не имеют и пребывают в глупых заблуждениях…

Цена этого электросчетчика составляла 17 рублей. Он изготавливался по техусловиям ТУ 25-01-2054-76 в соответствии с требованиями ГОСТ 6570-75.

Итак, это изделие характерной формы — цилиндрический корпус, внизу которого расположен выступ с контактами, закрываемый крышкой и пломбируемый. На верхней части стеклянное окно, под которым находится шкала, где можно видеть цифровые значения счетчика, вращающийся диск с меткой.

Корпус счетчика СО-И446 изготовлен из прочной пластмассы, однако хрупкой… Наверху имеется стальная петля, на задней части два овальных выреза — монтажные отверстия для крепления и точного выравнивания по вертикали устройства.

Приступаем к разборке. Сперва снимаем крышку, которая скрывает все подключаемые провода. Помимо защиты от поражения током, эта крышка предотвращает всякие несанкционированные подключения. Крышка крепится специальным винтом с отверстием, туда на проволоке вешается свинцовая пломба. На внутренней стороне крышки нанесена схема подключения.

Контактные группы изготовлены из латуни, покрытой хромом. Они достаточно толстые и могут выдержать большую нагрузку.

Верхняя цилиндрическая крышка держится на двух винтах, они залиты мастикой и также помечены клеймом. Внутри крышки смотрим как прикреплено стекло — с помощью двух (иногда четырех) прижимов. Стекло прижимается к корпусу через эластичную герметизирующую прокладку — некое подобие силиконового клея, так правильней.

Устройство электросчетчика СО-И446 электромеханическое — стандартное и классическое. Не буду его описывать — в интернете полно подробных описаний.

Основные узлы: два электромагнита — один с обмоткой напряжения, второй с токовой обмоткой, алюминиевый диск, один постоянный магнит, Счетный механизм — оцифрованные барабаны вращаются через группу шестеренок, связанных с червячной шестернею на оси алюминиевого диска.

Как можно видеть, устройство сравнительно простое, но требующее тщательности изготовления и точной настройки.

Я выкладываю много фотографий, которые наглядно показывают все устройство данного электросчетчика. Этапы полной разборки:

Я раньше как-то не мог понять, зачем воруют счетчики. Украсть, чтобы потом продать обворованному же? Или чтобы разобрать электросчетчик на цветной металл? Да, в электросчетчике СО-И446, и ему подобных, есть некоторое количество цветного металла — медь, немного латуни и немного алюминия… счетчик разбирается в целом легко и добыть металл нетрудно, но… оно того стоит? Совсем малость металла, за который выручить можно совсем немного денег… и воровство — преступное деяние с рисом получить срок, опасность — получить удар током (или множество ударов от бдительного хозяина), трата определенного времени на разборку… Не знаю — зачем они это делают?

Типы и виды электрических счётчиков

Электросчетчики принято классифицировать по типу подключения, типу измеряемых ими величин, а также по типу конструкции. По типу подключения электрические счетчики бывают:

    • Прямого включения в силовую цепь, в которой счетчик включается непосредственно к питающей сети.
    • Трансформаторного включения через специальные измерительные трансформаторы.

Большинство электросчетчиков, хорошо известных нам являются приборами прямого включения.

По типу измеряемых величин счетчики разделяются на:

    • Однофазные электросчетчики, которые учитывают потребление энергии в однофазных сетях напряжением 220 В и частотой 50 Гц.
    • Трехфазные электросчетчики учитывают потребленную энергию в сетях 380 В, частотой 50 Гц. Причем все современные трехфазные счетчики способны учитывать электроэнергию и по одной, отдельно взятой фазе.

По типу конструкции счетчики подразделяются на:

    • Электромеханические или индукционные счетчики, в которых подсчет ведется за счет вращения алюминиевого диска в магнитном поле. Скорость вращения диска пропорциональна потребляемой мощности, а учет количества происходит подсчетом количества оборотов диска при помощи специального механизма. Например, в распространенном однофазном счетчике СО-И446 — 1 киловатт-час потребленной энергии соответствует 1200 оборотов диска.
    • Электронные счетчики – представляют собой устройства, которые аналоговый электрический сигнал, снятый с измерительного трансформатора тока, преобразуют в электронные импульсы, частота следования которых пропорциональна потребляемой в данный момент мощности. Подсчет количества импульсов позволяет судить о количестве потребленной электрической энергии. Электронные счетчики постепенно вытесняют индукционные в силу своих преимуществ.

Какие есть преимущества у электронных устройств перед индукционными?

Независимо от того, что электронные счетчики дороже индукционных, они все равно имеют массу преимуществ, которые делают их широкое использование обоснованным.

    • Электронные счетчики имеют высокий класс точности, обычно от 0,5 до 2,0, причем он сохраняется в сложных условиях или низких, или быстропеременных нагрузок.
    • Электронные счетчики способны на многотарифный учет электрической энергии, что позволяет потребителям экономить немалые средства.
    • Кроме количества потребленной энергии электронные счетчики могут контролировать и ее качество, что позволяет иметь контроль над выполнением договорных обязательств со стороны энергоснабжающей компании.
    • Кроме активной потребляемой мощности электронные счетчики могут измерять и реактивную мощность, а также могут вести учет расхода электроэнергии в двух направлениях.
    • Собранные электронным счетчиком данные сохраняются во внутренней энергонезависимой памяти прибора. К этим данным есть доступ через удобный цифровой интерфейс.
    • Использование электронных счетчиков позволяет намного эффективнее бороться со случаями хищения электроэнергии. Любая попытка несанкционированного доступа таким счетчиком фиксируется.
    • Электронные счетчики имеют цифровой интерфейс, который позволяет дистанционно считывать с них различные данные, а также программировать их на многотарифный учет по двум и более тарифам, которые распространяются на определенные временные промежутки.
    • Электронные счетчики обычно имеют меньшие габариты, чем индукционные, что позволяет их монтировать в стандартных электрощитах наряду с другим модульным электрооборудованием.
    • Срок службы электронных счетчиков производители декларируют в течение не менее 30 лет, а интервалы времени между их поверками составляют от 10 до 16 лет.

Одним из главных недостатков электронных счетчиков является их низкая устойчивость к грозовым импульсным разрядам, от которых они часто выходят из строя. Доля индукционных счетчиков еще достаточно высока и они не собираются сдавать свои позиции, так как их надежность проверена более чем столетним опытом их эксплуатации. Правда

Зачем нужен многотарифный счётчик и соответствующая система учета электроэнергии?

Известно, что пик электрических нагрузок приходится на утренние и вечерние часы. Именно в это время идет повышенная нагрузка на все распределительное электрооборудование, что сказывается на высокой вероятности отказов его именно в эти часы. Электростанции вынуждены сжигать гораздо больше топлива, а это сказывается на увеличении количества выбросов парниковых газов в атмосферу.

Для того, чтобы стимулировать включение мощных потребителей энергии в ночные часы, когда нагрузка наиболее низкая, была разработана многотарифная политика.

В России наиболее применима двухтарифная политика, когда тариф за оплату электроэнергии в ночные часы (с 23.00 до 7.00) существенно ниже, бывает даже ниже в 2 раза. В некоторых регионах и других промышленно развитых странах бывает, что используется до 12 различных тарифов. Для того чтобы учитывать потребление энергии при такой системе расчётов были разработаны однофазные двухтарифные счётчики.

Производители бытовой техники специально разрабатывают и выпускают такие мощные потребители электрической энергии как стиральные и посудомоечные машины, электрические бойлеры с функцией запуска по таймеру или с отложенным стартом именно для того, чтобы их работа была запланирована на ночные часы, когда тариф минимален.

Очевидно, что многотарифный учет может вести только электронный счетчик, поэтому всем желающим переходить на многотарифную систему придется приобретать именно такой прибор.

При невозможности воспользоваться многотарифным учетом, вполне можно обойтись и обычным индукционным счетчиком, классом точностине менее 2,0. Такой прибор будет оправдан экономически из-за его меньшей цены и более низкой чувствительности, которая не позволяет регистрировать расход электроэнергии приборами, находящимся в дежурном режиме (телевизор, музыкальный центр, компьютер и т.п.).

Основные характеристики, на которые нужно обратить внимание перед выбором оборудования

Правильный выбор электросчетчика должен начинаться с изучения его характеристик, которые должны соответствовать его условиям эксплуатации.

    • Счетчики бывают одно и трехфазные, а это должно соответствовать типу электроснабжения. Однофазные счетчики не могут учитывать электроэнергию в трехфазных сетях, а трехфазные могут в однофазных, но их применение в таких сетях экономически невыгодно.
    • Номинальное электрическое напряжение и частота. Обычно это для однофазных сетей 220 В, а для трехфазных 380 В. Частота переменного тока в наших электрических сетях принята 50 Гц. Бывают счетчики, предназначенные для учета электроэнергии с другими параметрами, но они имеют специальное назначение.
    • Номинальный и максимальный ток нагрузки, при котором может функционировать электросчетчик. Ранее было нормально, что электросчетчик мог быть рассчитан на номинальный ток в 5 Ампер, но с широким распространением мощных бытовых приборов этого явно недостаточно, поэтому широкое применение нашли счетчики с более высоким номинальным током нагрузки. Кроме этого счетчики могут длительное время работать и с токами, которые превышают на 200% номинальный ток.
    • Класс точности характеризует наибольшую его допустимую погрешность, выраженную в процентах. Для бытовых счетчиков вполне допустимо иметь класс точности равный 2,0.
    • Количество тарифов указывает на то, по скольким тарифам может работать счетчик.
    • Возможность счетчика работать в автоматизированной системе коммерческого учета электроэнергии (АСКУЭ) позволяет снимать показания удаленно, а также правильно тарифицировать потребленную энергию. Все современные многоквартирные дома оснащаются такими системами. В случае, если АСКУЭ в доме нет, то есть счетчики с автоматическим внутренним тарификатором.
    • Диапазон рабочих температур. Сейчас принято в частных домовладениях устанавливать счетчики на улице, для предотвращения хищения электрической энергии. Поэтому чем шире температурный диапазон, тем лучше.
    • Габаритные размеры могут иметь значение, когда счетчик будет устанавливаться в специальный бокс.
    • Межповерочный интервал и срок службы. Для однофазных электронных счетчиков достаточно поверки 1 раз в 16 лет, а срок службы их не менее 30 лет.

Рассмотрим непосредственно схему подключения

Любой однофазный электрический счетчик подключается к сети не менее, чем 4 проводами. Из них два провода – это вход и выход фазы, а другие два вход и выход рабочего нулевого проводника. Подключение производится при помощи специальных винтовых клемм, расположенных на клеммной колодке, закрытой крышкой, которая пломбируется службами Энергонадзора.

Клеммы имеют нумерацию от 1 до 4.

    1. Клемма №1 предназначена для подключения фазного проводника сети.
    2. Клемма№2 предназначена для подключения фазного проводника, ведущего к потребителям электроэнергии, то есть в квартиру или дом.
    3. Клемма №3 предназначена для подключения нулевого провода сети.
    4. Клемма №4 предназначена для нулевого провода, ведущего к потребителям энергии.

Фазные проводники принято обозначать буквой L и цветами красным или коричневым, а нулевой рабочий обозначают буквой N и синим цветом. Помимо них в современных электропроводках еще есть проводник, обозначаемый PE и желто зеленым цветом. Это защитный нулевой провод, который не подключается ни к счетчику, ни к какому либо другому прибору. Он должен неразрывно доходить до каждой розетки к ее заземляющему контакту.

Разберёмся в тонкостях установки

Все работы по установке счетчиков должны вестись, во-первых, теми организациями, которые имеют на это полномочия, а во-вторых, квалифицированным персоналом, имеющим нужный допуск.

Подготовительные работы перед установкой

Вначале определяется место, где будет монтироваться электросчетчик. В многоквартирных домах в подъездах есть специальные силовые шкафы, где есть для счетчиков штатные места, а владельцам загородных домов или дачных участков следует позаботиться о приобретении специального бокса, специально предназначенного для установки электросчетчиков. Такие боксы имеют прозрачные дверцы или окошки, позволяющие без труда снимать показания, а также места для установки модульного электрооборудования.

Модульное электрооборудование – это широкий класс устройств, выполняющих защитную функцию, функцию коммутации, распределения электрической энергии, а также устройства контроля и учета. Модульные приборы устанавливают на специальную стандартную DIN-рейку шириной в 35 мм. Шириной одного модуля принята величина в 17,5 мм, расстояние между рейками по вертикали – не менее 125 мм. Производители современных электрощитов указывают их емкость именно в количестве модулей.

Современные однофазные электросчетчики также являются модульным оборудованием, имеющим ширину от 4 и выше стандартных DIN-модулей. Если в выбранном электрощите нет DIN-рейки, то ее можно смонтировать или закрепить счетчик за другие монтажные отверстия. В боксах, имеющих прозрачные окошки, счетчик монтируется так, чтобы можно было удобно считывать с него показания.

Монтаж модульного оборудования

Перед электросчетчиком обычно ставится вводной автомат, который, во-первых, позволяет производить любые работы со счетчиком при отключенной энергии, а во-вторых, защищает от токов короткого замыкания и длительных перегрузок. Номинал автомата выбирается в соответствии с планируемой нагрузкой. В однофазных сетях применяются двухполюсные автоматы, размыкающие и фазный, и нулевой проводник.

Кроме вводного автомата монтируют и другие устройства для распределения электроэнергии, защиты людей и оборудования. Это устройства защитного отключения, автоматические выключатели и при необходимости — клеммники, которые будут распределять фазу, ноль и защитный ноль по группам потребителей.

После монтажа на DIN-рейку производится коммутация всего оборудования при помощи провода соответствующего нагрузке диаметра. Лучше всего это делать специальным медным одножильным проводом марки ПВ-1.

При затяжке клемм электросчетчика и другого оборудования следует обеспечить нормальный контакт. Это достигается применением одножильного монтажного провода, а в случае с многожильным, его концы либо залуживаются, либо на них одевается, а затем обжимается специальный наконечник.

Алюминиевые провода имеют свойство «плыть» в контактах клемм, поэтому после установки счетчика ориентировочно через полгода следует произвести подтяжку клеммных винтов. Усилие затяжки должно быть не таким сильным, чтобы сорвать резьбу, но и достаточно плотным.

Подключение питающей сети

После коммутации всех соединений в электрощитке, еще раз проверяется правильность монтажа и затяжка винтов клемм. Далее, при выключенном вводном автомате, всех автоматов защиты и УЗО производится подключение к питающей сети. Для этого цельными кусками провода соответствующего нагрузке диаметра со специальных клеммников, которые есть в подъездных щитах, делается подключение вводного автомата к питающей сети. Фаза должна подаваться на клемму №1 электросчетчика, а ноль на клемму №3.

При подключении от воздушной линии используется специальный самонесущий провод СИП, у которого по центральной алюминиевой жиле передается фаза, о ноль передается по стальной оплетке в виде экрана. Подключение делается только цельными отрезками проводов без всяких соединений.

После проверки всех соединений можно подавать электроэнергию потребителям и проверить правильную работу счетчика.

Заключительный этап работ: опломбировка

Опломбировка – это обязательная процедура, которая производится представителем электроснабжающей организации. Только после этого договорные отношения о поставке электроэнергию могут вступить в законную силу.

Если счетчик смонтирован в подъездном щите, то пломбируется только клеммная крышка, а если в специальном боксе на улице, то может пломбироваться и весь бокс. При этом для потребителя есть возможность считывать показания счетчика и через специальную дверцу есть доступ к модульному коммутационному и защитному оборудованию.

Любая попытка несанкционированного доступа к клеммам электросчетчика автоматически считается нарушением и может повлечь за собой немалые штрафы. В современных электронных счетчиках даже есть функция электронной пломбы, когда все случаи вскрытия клеммной крышки регистрируются и заносятся в память устройства.

Общее понятие

Под этим словосочетанием понимается наличие специального аппарата, включающегося при необходимости преобразования тока. Конструкция предполагает последовательное включение первичной обмотки в цепь. Провода, входящие в состав вторичной обмотки, связываются с тем или иным электрическим прибором. К ней же можно подключить реле, связанное с защитой и автоматикой. Устройство является измерительным прибором, применяющимся в электроэнергетике. Все провода, составляющие обмотку, заключаются в изоляцию. Это в полной мере относится, как к первичной, так и вторичной обмотке.

При эксплуатации устройства величина потенциала, характерная для вторичной обмотки приближается к «земле». Такой эффект достигается при заземлении одного конца провода.

Трансформатор используется для преобразования тока посредством электромагнитной индукции без изменения его частоты

Посредством трансформаторов проводится учет и измерение тока с высоким напряжением. Вначале замерам подлежит первичное напряжение, размерной величиной для которого является ампер.

Совет №1: Необходимо проводить разграничение между измерительными трансформаторами тока и устройствами силового плана. Первые отличаются непостоянностью индукции, их действия определяются режимом эксплуатации. В связи с этим трансформатор тока можно отнести к универсальным устройствам.

Принцип действия

Работа всех подобных приборов основывается на следующем принципе. У любого устройства есть силовая первичная обмотка. В ней содержится определенное количество витков провода, через который проходит напряжение.

На своем пути току приходится преодолевать препятствие, связанное с полным сопротивлением. В непосредственной близости от катушки создается магнитный поток. Его улавливает магнитопровод. В отношении проходящего тока он должен быть расположен перпендикулярно. При этом процесс превращения магнитной энергии в электрическую будет сопровождаться минимальными потерями.

Таким же образом располагается и вторичная обмотка. При пересечении ее магнитным потоком активируется электродвижущая сила, что приводит к образованию электричества.

Требуется приложение достаточных усилий для преодоления сопротивления катушки и выходной нагрузки. Поэтому возникает снижение напряжения, которое существует во вторичной цепи.

Принцип функционирования трансформатора тока основывается на явлении электромагнитной индукции

Особенности функционирования трансформаторов определяются предназначением устройств:

  • Трансформаторы для сварки действуют по принципу максимальной отдачи. Они обладают возможностью выдерживать значительные нагрузки, при которых имеет место высокое напряжение.
  • Работа однофазного трансформатора связана с эффектом, который проявляет магнитный поток. При замыкании вторичной обмотки возникает электродвижущая сила. По закону Ленца наблюдается уменьшение величины магнитного потока. На первичную обмотку однофазных устройств осуществляется подача постоянного тока, потому уменьшения магнитного потока не происходит.

Меры предосторожности

Эксплуатация трансформаторов тока предполагает соблюдение определенных мер безопасности, поскольку она связана с определенным риском по отношению к здоровью человека:

  1. Существует возможность поражения электротоком, связанная с действием высоковольтного потенциала. Магнитопровод конструктивно выполняется из металла и отличается хорошей проводимостью. Если будут иметь место дефекты в изоляционном слое обмотки, то персоналу грозит возможность получения электротравмы. Для профилактики подобных случаев вывод вторичной обмотки подлежит заземлению.
  2. Работник связан с опасностью поражения высоковольтным потенциалом из-за разрыва вторичной цепи. Ее выводы имеют маркировку «И1» и «И2».
  3. Решения конструкторов при проектировании и производстве подобных устройств, преследует ряд конкретных задач. Если какой-либо параметр не удовлетворяет требованиям, цели достигают путем усовершенствования существующих конструкций. Новый образец еще недостаточно проверен временем, а поэтому, способен таить в себе некоторую опасность.

Схемы подключения счетчика: пошаговое руководство

Подключение может осуществляться по нескольким вариантами.

Случай с десятью проводами

Цепь питания разделена в соответствии с током и напряжением. Такой вариант наиболее безопасен. Подключение осуществляется в разрыве проводов фаз.

Подключение фазы А ведется к клемме Л1 первого трансформатора. К ней же ведется подключение клеммы 2 счетчика. Клемму 1 необходимо соединить с контактами И1 ТТ1. Контакты И2 обоих трансформаторов соединяются вместе. Сюда же присоединяется контакты 6 и 10 на счетчике. В завершении все это соединяется с нейтральной шиной. Необходимо подключение к нагрузке всех трансформаторов контактов Л2.

Подключаем остальные контакты по схеме:

  • 3 на счетчике – И2 первого трансформатора;
  • 4 – И1 второго трансформатора;
  • 5 – фаза на входе – Л1 ТТ2;
  • 7- И1 третьего трансформатора;
  • 8 – фаза С – Л1 третьего трансформатора;
  • 9 – И2 ТТ3.

Схема «звезда»

Проводов потребуется гораздо меньше. Необходимо соединение всех клемм И2 от каждого устройства в один узел. Затем они подключаются к клемме 11 на счетчике. Соединение воедино контактов 3, 6, 9 и 10 подключается к нулевому проводу. В остальном все идентично предыдущему варианту.

Совет №2: Можно выполнить подключение с использованием испытательной клеммной коробки. При этом способе проводится подключение эталонного счетчика. Нагрузка не отключается.

Схемы подключения

Используется несколько вариантов подключения электросчетчика через трансформатор. Ниже приведены наиболее часто использующиеся схемы.

Схема подключения предполагает наличие двух трансформаторов тока и двух трансформаторов напряжения Схема подключения счетчика к трехфазной сети предполагает наличие двух трансформаторов тока Схема подключения счетчика к трехфазной сети предполагает наличие трех трансформаторов тока

Общие сведения о трансформаторах тока

Трансформаторы тока создаются согласно нормативной документации. Параметры регламентированы. Например, стандартами:

  1. ГОСТ 7746-2001.
  2. ГОСТ 23624-2001.

Небольшой трансформатор

Дело касается коэффициента трансформации. Главный параметр, показывающий отношение меж токами первичной, вторичной обмоток. Цифра позволит сопрягать трансформатор тока с счетчиком, защитным автоматом. Причем требования значительно снижаются. Сеть потребляет 200 А, коэффициент трансформации равен 100, достаточно наличия защитного автомата 2 А. Видите, очень выгодно. Безопасность персонала расписали.

Получается, во вторичной цепи напряжение сетевое. Выгоды не получается. Собственно, поэтому прибор называется трансформатором тока. Не меняет напряжения. Напоминаем, действующее значение фазы напряжения 380 вольт составляет 220 вольт. Работа с промышленной сетью напоминает однофазные. Трансформаторов тока понадобится три. Счетчик измеряет напряжение, ток, определяя параметры:

  • Полную мощность потребления в ВА.
  • Реактивную мощность в вар.
  • Активную мощность Вт.

Часто нужен нейтральный провод (даже в трехпроводных промышленных сетях). К трансформатору тока не относится. Включается не так, как обычный. Первичная обмотка малого сопротивления, чтобы не вносить возмущений в цепь. Включается последовательно полезной нагрузке (двигателям).

Типичный трансформатор включается следующим образом: нагрузка находится в цепи вторичной обмотки. Позволит развязать потребителя, источник по постоянному току (гальваническая развязка), получить нужные параметры. В нашем случае (!) манипуляций с входными напряжениями, токами не производится.

В цепь вторичной обмотки включается прибор измерения, контроля. Счетчики снабжены двумя катушками: тока, напряжения. В цепь вторичной обмотки включается первая. Катушка напряжения одним концом заводится на фазу, на второй подается нейтраль. Комплексный подход позволит оценить мощность. На нейтраль положено заводить один конец токовой катушки. Как узнать последовательность действий более подробно? Схема дается на приборе контроля, измерения. Трансформатор тока является изделием универсальными, тонкости нужно искать на корпусе (шильдике) стороннего оборудования.

Первичная обмотка включается последовательно полезной нагрузке, вторичная используется для внедрения в сеть устройств контроля, измерения. Подробная схема включения зависит от типа сопрягаемых устройств, приводится на корпусе, шильдике, инструкцией. Рассмотрим, как трансформатор тока обозначается электрическими схемами. На просторах сети встретим много ошибок. В предыдущих обзорах приводили рисунок трансформатора тока, просто копируем из предыдущей локации:

  1. Прямой толстой линией показана первичная обмотка. К одному концу подводится фаза, к другому подключается потребитель. Холодильник, кондиционер, завод. Чертеж дан показывает трехфазное напряжение 380 вольт. Показана одна ветка. Прочие подключаются аналогично. В нижнем правом углу можем видеть измерительные катушки счетчика. Одна из возможных схем, не является догмой. Подробно электрические карты приводятся корпусами, шильдиками приборов. Можно достать на специализированном форуме.

    Подключение трансформатора тока

  2. Витками схема обозначает вторичную обмотку. Иногда на рисунках точки включения могут лежать на толстой линии, не должно смущать. Для большей наглядности выводы вторичной обмотки расположили ниже. К ним подсоединяются приборы измерения, контроля. Здесь ток меньше потребляемого полезной нагрузкой (холодильники, кондиционеры) в разы. Сколько — показывает коэффициент трансформации. Кстати, согласно ГОСТ, не может быть произвольным. Значение выбирается из ряда! Согласно требованиям к измерительным приборам, контрольным, ток вторичной цепи равен 1, 2, 5 А. На такие условия работы рассчитываются счетчики, прочие контрольные, учетные приспособления. Коэффициент трансформации выбирается за счет варьирования тока полезной нагрузки, протекающего в первичной обмотке. Пределы широкие. Приводим неполный ряд, взятый из стандартов (для измерительных лабораторных трансформаторов тока), указанных выше – подробно читатели могут ознакомиться с документом самостоятельно: 0,1; 0,5; 1; 1,5; 5; 7,5; 10; 15; 20; 25; 30; 800 А; 1; 1,2; 5; 6; 8; 15; 16; 18; 30; 32; 50; 60 кА. Из неполного перечня видно: не всегда трансформатор тока понижающий. Может повысить значение тока 0,1 А до 5 А. Что позволит использовать мощные измерители простейшими цепями. Счетчик должен давать возможность учитывать существующее положение дел, некоторые предназначены для использования только с определенным коэффициентом трансформации. Подробно о пригодности прибора судим в каждом конкретном случае отдельно.

Что касается приборов, применяемых за пределами лабораторий, разброс ниже. Обратите внимание, нагрузка вторичной цепи ученых должна быть по возможности активной. Точнее говоря, если коэффициент мощности меньше 1, следует подключать только индуктивные сопротивления. По большей части выполняется, в особенности для трехфазных цепей. Сварочный аппарат на входе содержит обмотку трансформатора, двигатель подключается на катушку статора, ротора. Касается счетчиков, где витой провод послужит для оценки параметров напряжения, тока. Примеры индуктивных сопротивлений. В реальности лучше перестраховаться, если коэффициент мощности меньше 1 (реактивное сопротивление обусловило возникновение потерь), пусть лучше импеданс (комплексное сопротивление) будет индуктивным, не емкостным.

Маркировка трансформаторов тока

Различные трансформаторы

Прежде, чем произвести подключение трансформатора, убедитесь, что годится выбранным целям. Из сказанного выше понятно, как оценить количественно параметры, для применения знаний на практике следует уметь читать маркировку изделия. Код регламентируется стандартом. Приводим перечень параметров, указываемых производителем на шильдике трансформатора тока:

  1. Логотип производителя с последующей надписью «трансформатор тока». Достаточно сложно промахнуться, выбрав в магазине другой прибор.
  2. Тип трансформатора характеризуется конструктивными особенностями, видом изоляции. Расшифровка приводится в стандартах, указанных выше. Рядом в маркировке идет климатическое исполнение. Есть сомнения в умении читать шильдик, проще дома заранее распечатать таблицы ГОСТ. При необходимости следует изучить конструктивные особенности. Поможет понять, как подключить трансформатор, оценить пригодность для цепи в принципе.
  3. Порядковый номер по реестру предприятия-изготовителя понадобится при обращении в службу поддержки (иностранные компании), используется для отчетности, если покупку осуществит не физическое лицо.
  4. Номинальное напряжение первичной обмотки указывается для всех трансформаторов тока за исключением встроенных. Потому что в последнем случае электрические параметры должны быть соблюдены внешним по отношению к прибору устройством.
  5. Номинальная частота может отсутствовать, если (по значению напряжения) можно понять: стандартна для государства (РФ — 50 Гц).
  6. В природе встречаются трансформаторы с несколькими выводами вторичной обмотки. Позволит получить два-три прибора в одном. В зависимости от электрической схемы будет меняться коэффициент трансформации. Напротив параметров указывается номер вторичной обмотки.

    Характеристики трансформатора тока

  7. Коэффициент трансформации является важнейшей величиной, идет далеко не первым в маркировке. Обозначается прямой, наклонной дробью, в числителе стоит первичный ток, в знаменателе вторичный. Коэффициент трансформации намного больше единицы. Среди лабораторных изделий найдем вопиющие исключения из правила. Планируется подключение трансформаторов тока в маломощную цепь для использования стандартных приборов учета — ищите покупку по другому номеру ГОСТ (23624-2001).
  8. Класс точности важен мощным потребителям. Едва ли захочется платить лишние деньги. При необходимости обращайте внимание на параметр. Расшифровывается согласно ГОСТ 7746-2001.
  9. Номинальный класс безопасности прибора свидетельствует о том, что упоминали выше: за счет более мягких условий во вторичной обмотке риск поражения электрическим током падает. При соблюдении требований никто не гарантирует 100%, что несчастный случай не произойдет. Производственный процесс сразу закладывает некую мизерную вероятность летальных исходов, наша задача цифру уменьшить. Про коэффициент безопасности вторичной обмотки трансформатора тока расскажем следующим образом. Допустим, максимальный ток счетчика составляет 20 А. Коэффициент трансформации обозначен 20/2 А. Коэффициент безопасности изделия должен равняться 10, не более. При коротком замыкании первичной обмотки сердечник войдет в насыщение, ток вторичной цепи не превысит 20 А. Счетчик не сгорит. Аналогично рассчитывается безопасность рабочего персонала.
  10. Предельная кратность тесно связана с предыдущим значением. Отношение некоторого тока, при котором погрешность составляет не менее 10%, к номинальному. Предел, при котором трансформатор тока способен помогать в измерениях, выступать средством контроля.

Надеемся, читатели теперь знают, чем рассматриваемая задача отличается от вопроса о том, как подключить понижающий трансформатор 220/12 В. Совершенно разные вещи. Обмотки идут последовательно с нагрузкой, измерителем. Коэффициент трансформации показывает, какой прибор контроля можно использовать во вторичной цепи.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *