Опубликовано

Топливный элемент на водороде

Что такое топливные элементы?

Видео: Документальный фильм, топливные элементы для транспорта: прошлое, настоящее, будущее

Топливные элементы интересны производителям автомобилей, интересуются ими и создатели космических кораблей. В 1965 году они даже были испытаны Америкой на запущенном в космос корабле «Джемини-5», а позже и на «Аполлонах». Миллионы долларов вкладываются в исследования топливных элементов и сегодня, когда существуют проблемы, связанные с загрязнением окружающей среды, усиливающимися выбросомами парниковых газов, образующихся при сгорании органического топлива, запасы которого тоже не бесконечны.

Топливный элемент, часто называемый электрохимическим генератором, работает нижеописанным образом.

Схема работы Топливного элемента на водороде

Являясь, как аккумуляторы и батарейки гальваническим элементом, но с тем отличием, что хранятся в нем активные вещества отдельно. На электроды они поступают по мере использования. На отрицательном электроде сгорает природное топливо или любое вещество из него полученное, которое может быть газообразным (водород, например, и окись углерода) или жидким, как спирты. На электроде положительном, как правило, реагирует кислород.

Но простой на вид принцип действия, в реальность воплотить не просто.

Топливный элемент своими руками

Видео: Топливный водородный элементсвоими руками

К сожалению у нас нет фотографий, как должен выглядить этот топливный элекмнт, надеямся на вашу фантазию.

Маломощный топливный элемент своими руками можно изготовить даже в условиях школьной лаборатории. Необходимо запастись старым противогазом, несколькими кусками оргстекла, щелочью и водным раствором этилового спирта (проще, водкой), которое будет служить для топливного элемента «горючим».

Стационарная энергоустановка на базе химического топливного элемента

Прежде всего, необходим корпус для топливного элемента, изготовить который лучше из оргстекла, толщиной не менее пяти миллиметров. Внутренние перегородки (внутри пять отсеков) можно сделать немного тоньше – 3 см. Для склеивания оргстекла используют клей такого состава: в ста граммах хлороформа или дихлорэтана растворяют шесть грамм стружки из оргстекла (проводят работу под вытяжкой).

В наружной стенке теперь необходимо просверлить отверстие, в которое вставить нужно через резиновую пробку сливную стеклянную трубочку диаметром 5-6 сантиметров.

Все знают, что в таблице Менделеева в левом нижнем углу стоят наиболее активные металлы, а металлоиды высокой активности находятся в таблице в верхнем правом углу, т.е. способность отдавать электроны, усиливается сверху вниз и справа налево. Элементы, способные при определенных условиях проявлять себя как металлы или металлоиды, находятся в центре таблицы.

Теперь во второе и четвертое отделение насыпаем из противогаза активированный уголь (между первой перегородкой и второй, а также третьей и четвертой), который выполнять будет роль электродов. Чтобы через отверстия уголь не высыпался его можно поместить в капроновую ткань (подойдут женские капроновые чулки). В

Топливо циркулировать будет в первой камере, в пятой должен быть поставщик кислорода – воздух. Между электродами будет находиться электролит, а для того, чтобы он не смог просочиться в воздушную камеру, нужно перед засыпкой в четвертую камеру угля для воздушного электролита, пропитать его раствором парафина в бензине (соотношение 2 грамма парафина на пол стакана бензина). На слой угля положить нужно (слегка вдавив) медные пластинки, к которым припаяны провода. Через них ток отводиться будет от электродов.

Осталось только зарядить элемент. Для этого и нужна водка, которую разбавить с водой нужно в 1:1. Затем осторожно добавить триста-триста пятьдесят граммов едкого калия. Для электролита в 200 граммах воды растворяют 70 граммов едкого калия.

Топливный элемент готов к испытанию. Теперь нужно одновременно налить в первую камеру – топливо, а в третью – электролит. Присоединенный к электродам вольтметр должен показать от 07 вольт до 0,9. Чтобы обеспечить непрерывную работу элементу, нужно отводить отработавшее топливо (сливать в стакан) и подливать новое (через резиновую трубку). Скорость подачи регулируется сжиманием трубки. Так выглядит в лабораторных условиях работа топливного элемента, мощность которого, понятна мала.

Видео: Топливный элемент или вечная батарейка дома

Чтобы мощность была большей, ученые давно занимаются этой проблемой. На активной стали разработки находятся метанольный и этанольный топливные элементы. Но, к сожалению, пока на практику их выхода нет.

Почему топливный элемент выбран в качестве альтернативного источника питания

Работающая модель игрушки-электромобиля на водородном топливном элементе

Альтернативным источником питания выбран топливный элемент, поскольку конечным продуктом сгорания водорода в нем является вода. Проблема касается только в нахождении недорогого и эффективного способа получения водорода. Колоссальные средства, вложенные в развитие генераторов водорода и топливных элементов, не могут не принести свои плоды, поэтому технологический прорыв и реальное их использование в повседневной жизни, только вопрос времени.

Уже сегодня монстры автомобилестроения: «Дженерал Моторс», «Хонда», «Драймлер Коайслер», » Баллард», демонстрируют автобусы и авто, которые работают на топливных элементах, мощность которых достигает 50кВт. Но, проблемы, связанные с их безопасностью, надежностью, стоимостью — еще не решены. Как говорилось уже, в отличие от традиционных источников питания – аккумуляторов и батарей, в этом случае окислитель и горючее подаются извне, а топливный элемент лишь является посредником в происходящей реакции по сжиганию топлива и превращению в электричество выделяющейся энергии. Протекает «сжигание» только в том случае, если элемент ток отдает в нагрузку, подобно дизельному электрогенератору, но без генератора и дизеля, а также без шума, дыма и перегрева. При этом, КПД намного выше, поскольку отсутствуют промежуточные механизмы.

Видео: Автомобиль на водородном топливном элементе

Большие надежды возлагаются на применение нанотехнологий и наноматериалов, которые помогут миниатюризировать топливные элементы, при этом увеличить их мощность. Появились сообщения, что созданы сверх-эффективные катализаторы, а также конструкции топливных элементов, не имеющих мембран. В них вместе с окислителем подается в элемент топливо (метан, например). Интересны решения, где в качестве окислителя используется кислород, растворенного в воде воздуха, а в качестве топлива – органические примеси, скапливающиеся в загрязненных водах. Это, так называемые, биотопливные элементы.

Топливные элементы, по прогнозам специалистов, на массовый рынок могут выйти уже в ближайшие годы

2.1. Водородно-кислородный элемент

Основа простейшего водородно-кислородного топливного

элемента — два электрода, на которых происходят электрохимические реакции ионизации газов. Электроды имеют вид тонких пористых дисков, получаемых прессованием и спеканием металлических порошков, чаще всего никелевого порошка. В электрод (либо в процессе изготовления, либо потом) введен катализатор. Электроды укрепляют в ячейке так, чтобы с одной стороны они соприкасались с раствором электролита. Края электродов тщательно герметизированы.

Через обратную сторону к электродам подаются газы: к одному — водород, к другому — кислород. Газы нагнетают под слегка повышенным давлением, так что они частично вытесняют электролит из пор электродов. Таким образом, внутри пористого электрода создаются участки контакта трех тел — твердого электрода, жидкого электролита и газообразного реагента (водорода или кислорода). Вблизи этих так называемых трехфазных границ раздела и происходит токообразующая электрохимическая реакция. От электродов ток с помощью специальных токоотводов отводится во внешнюю цепь.

Величина максимального разрядного тока элемента зависит прежде всего от величины поверхности электродов и от их каталитической активности. Для сравнения элементов разных размеров очень удобно рассчитать величину плотности электрического тока, т. е. тока, снимаемого с единицы поверхности электродов. Для водородно-кислородных элементов в зависимости от катализаторов и условий работы максимальная плотность тока может колебаться от 50 до 500 (и более) миллиампер на квадратный сантиметр поверхности электрода.

2.3. Высокотемпературные топливные элементы

Электрохимическое окисление топлива не всегда протекает гладко. Такие распространенные и дешевые виды топлива, как генераторный СО или природный газ СН4, реагируют на электродах значительно хуже, чем водород. Даже самые активные катализаторы лишь в незначительной степени ускоряют эти реакции. А малая скорость реакции означает меньшую величину плотности тока и, следовательно, малую мощность.

Возможность для проведения этих реакций с достаточной скоростью дает использования высоких температур, например 500° или даже 1000° Ц. Но тут возникает новая трудность: при высоких температурах вода испаряется мгновенно, водный раствор электролита оказывается неподходящим.

Электролитами могут служить либо расплавы солей (например, смесь углекислых солей натрия, калия и лития, плавящаяся при температуре чуть ниже 500° Ц), либо твердые электролиты.

Таким твердым электролитом может быть, например, двуокись циркония, содержащая некоторые примеси. При температурах около 800—1000° Ц благодаря подвижности отрицательных ионов кислорода О2 она начинает хорошо проводить электрический ток (катионы не перемещаются и ток не переносят), Наличие такой «кислородной» проводимости влияет на характер электрохимических реакций, протекающих на электродах. Если построить элемент описанного выше типа — вместо раствора КОН взять в качестве электролита двуокись циркония — и подводить к одному электроду окись углерода, а ко второму кислород, то при температурах около 1000° Ц молекулы кислородного электрода станут принимать электроны из внешней цепи, превращаясь в отрицательные ионы, а молекулы СО топливного электрода соединяются с ионами О2 из твердого электролита, образуя углекислый газ и отдавая электроны во внешнюю цепь:

Электрический ток во внешней цепи обусловлен переходом электронов от отрицательного (топливного) электрода к положительному (кислородному) электроду; этот ток компенсируется движением ионов О2 в твердом электролите в обратном направлении.

Такие высокотемпературные топливные элементы, питаемые генераторным газом и кислородом, могут работать при плотностях тока 50— 150 ма/см2, выдавая напряжение около 0,5 в на элемент.

Топливные элементы выходят из лабораторий, но предстоит большая работа по их усовершенствованию, повышению их стабильности и упрощению технологии их изготовления. Но уже можно сказать, что вопрос непосредственного преобразования химической энергии топлива в электрическую принципиально решен, и в недалеком будущем различные типы топливных элементов найдут широкое применение.

Конечно, заманчивее всего было бы создать на базе топливных элементов большие электростанции, вырабатывающие электрическую энергию из природного топлива или продуктов его переработки. Основой таких электростанций явятся высокотемпературные топливные элементы с расплавленным или твердым электролитом. Топливом для элементов послужит либо природный газ, либо генераторный газ, получающийся при газификации твердого топлива. Твердое топливо при температуре около 700°Ц обрабатывают углекислым газом, в результате чего образуется окись углерода. Окись углерода поступит в топливный элемент, где окислится в углекислый газ:

2 СО + 02->2С02.

Электростанция будет состоять из большого количества совершенно одинаковых элементов, что значительно упростит ее строительство. На станции почти совсем не будет движущихся и вращающихся механизмов. Постоянный ток, вырабатываемый топливными элементами, поступит к мощным полупроводникам преобразователя, вырабатывающим почти без потерь переменный ток промышленной частоты.

Трудно сказать, сколько потребуется времени для осуществления этого, но несомненно, что когда-нибудь невыгодный процесс химического сжигания топлива будет заменен электрохимическим «холодным горением».

Топливные элементы найдут применение также в малой энергетике, и при этом раньше, чем в большой. В сельских районах перестанут стучать многочисленные «дизели», уступив свое место бесшумным электрохимическим установкам.

Очень интересна перспектива применения топливных элементов в автомобилях. Автомобили с электрическими двигателями, питаемыми от топливных элементов, не будут отравлять воздух городов вредными выхлопными газами. Создание различных топливных элементов электрохимия считает одной из своих важнейших задач. Ее успешное решение способно преобразить многие отрасли техники.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *