Опубликовано

Схемы операционных усилителей

Содержание

Применение трансимпедансных усилителей

Введение

Передаточная функция трансимпедансного операционного усилителя (ТИОУ) представляет собой зависимость выходного напряжения от входного тока и имеет размерность сопротивления. К ТИОУ относятся ОУ с токовой обратной связью. Когда к входу ОУ с обратной связью по напряжению подключен источник тока, например фотодиод (в обратную связь в этом случае включает резистор с большим сопротивлением), ОУ также можно считать ТИОУ. Для стабилизации схемы параллельно этому резистору ставится конденсатор достаточно большой емкости. В статье рассматривается расчет конденсатора для получения наибольшей полосы пропускания с сохранением устойчивости схемы.

Основные расчетные соотношения

На рисунке 1 показана полная схема ТИОУ, используемого для усиления тока фотодиода VD. В большинстве случаев для смещения Vсмещ используется шина питания +V.

Рис. 1. Схема включения ТИОУ

На эквивалентной схеме (см. рис. 2) фотодиод представлен в виде источника тока IPK и паразитных емкостей.

Рис. 2. Эквивалентная схема фотодиода. CJ — емкость обедненной области диода; IPH — ток диода

Эта схема удобна для нахождения передаточной характеристики ТИОУ. Примем, что усилитель идеален, поэтому на инвертирующем входе виртуальный ноль. Емкости ССМ и СJ не влияют на передаточную функцию, поэтому мы их не учитываем. Таким образом, выражение для передаточной характеристики имеет следующий вид:

(1)

отсюда

(2)

Таким образом, появляется полюс на частоте fp = 1/2pRFCF, который стабилизирует схему (этот эффект будет рассмотрен позже). Для нахождения коэффициента передачи ОС обозначим: СIN = CJ + CCM. Таким образом получаем простую дифференцирующую схему с заземленной входной емкостью СIN. Коэффициент передачи сигнала ОС характеризует величину напряжения, которое передается с выхода ОУ на вход.

После некоторых упрощений получаем окончательное выражение для коэффициента обратной связи F:

(3)

Таким образом, коэффициент F для ТИОУ выражается так же, как и для дифференцирующей цепочки. Разница заключается только в добавлении емкости CIN, которая представляет собой сумму емкости фотодиода и входной емкости усилителя. Заметим, что для низких частот F = 1. Коэффициент усиления с ОУ обратной связью ОУ равен 1/F. Для устойчивости в схему добавляют стабилизирующий конденсатор CF. Однако включение дополнительной емкости уменьшает полосу пропускания, поэтому следует искать компромисс.

На рисунке 3 показаны частотные зависимости коэффициента усиления А без обратной связи и коэффициента усиления 1/F с ОС при оптимальном значении CF.

Рис. 3. Амплитудно-частотные характеристики ТИОУ с разомкнутой и замкнутой ОС

Полюс 1/F находится на графике А, другими словами, значение CF оптимально при A = 1/F или АF = 1. В отсутствие CF 1/F = 0, что вызывает сдвиг фаз почти на 180° в точке пересечения графиков А и 1/F.Появление полюса на частоте fp обеспечивает компенсацию с опережением или запаздыванием, при этом фазовый сдвиг в точке пересечения составляет 135°, таким образом, запас по фазе составит 45°. При недостаточной компенсации усилителя точка пересечения будет лежать выше второго полюса ТИОУ.

Из выражения для F найдем значение полюса 1/F:

(4)

Частота, до которой 1/F = 0, выражается следующим образом:

(5)

При частоте fz наклон графика 1/F меняется с 0 дБ на +20 дБ. Для стабильности работы усилителя наклон снова должен стать равным нулю. Это достигается как раз на втором полюсе, обусловленным конденсатором CF.

На рисунке 3 пунктиром изображен случай перекомпенсации, когда величина CF слишком большая. В этом случае полюс сдвигается на более низкую частоту. Более того, влияние слагаемого СIN в знаменателе выражения (5) уменьшается, поэтому частота fz также уменьшается. Перекомпенсацию следует применять тогда, когда усилитель недостаточно компенсирован и точка пересечения графиков А и 1/F находится рядом со вторым полюсом характеристики А.

Коэффициент усиления без ОС находится из простого соотношения:

, (6)

где fGBW — частота единичного усиления.

Учитывая, что AF = 1, опуская промежуточные преобразования и упрощая полученные выражения, в конечном итоге получаем выражение:

(7)

Это уравнение довольно сложно решить относительно CF. Для большинства случаев справедливо допущение CIN; CF. Принимая его, получаем окончательное выражение для CF:

(8)

Это формула для нахождения оптимальной величины емкости CF. Если CF требуется слишком большая и вызывает звон в схеме, то следует использовать перекомпенсацию. Однако перекомпенсация уменьшит полосу пропускания ТИОУ

Практический пример

Рассмотрим схему (см. рис. 4) на операционном усилителе LMV793 фирмы National Semiconductor.

Рис. 4. Практическая схема реализации ТИОУ

Это средний по быстродействию усилитель с недостаточной компенсацией, полосой пропускания 88 МГц и входной емкостью 15 пФ. В качестве датчика выбран фотодиод PIN-HR040 фирмы OSI Optoelectronics с полосой пропускания 300 МГц, чтобы он не ограничивал полосу пропускания усилителя. Емкость фотодиода 7 пФ. В качестве источника света используются лазерные диоды с короткими фронтами и срезами (5 нс). Сопротивление в цепи обратной связи RF = 100 кОм для получения большого коэффициент усиления.

Развязывающие конденсаторы источников питания не показаны, однако следует учитывать, что на каждой шине питания установлен танталовый конденсатор емкостью 6,8 мкФ для фильтрации низких частот и керамический конденсатор емкостью 0,1 мкФ для фильтрации высоких частот. Керамический конденсатор следует размещать как можно ближе к выводам питания операционного усилителя.

Емкость фотодиода CJ= 7 пФ, входная емкость усилителя СCM= 15 пФ, значит, суммарная входная емкость составляет СIN 22 пФ. Используя выражение (8), получаем СF= 0,53 пФ. Это очень маленькое значение. В схему включен конденсатор с номинальной емкостью 0,5 пФ, однако его измеренное значение оказалось 0,64 пФ, таким образом, ТИОУ немного перекомпенсирован. Полосу пропускания можно найти исходя из постоянной времени RFCF или по временам фронта. В первом случае получаем 2,5 МГц, а во втором 3,2 МГц. Наличие выброса говорит о том, что запаса по фазе 45° не хватает. Выходная реакция усилителя показана на рисунке 5а и 5б.

Рис. 5. Выходной сигнал ТИОУ при RF = 100 кОм

Теперь рассмотрим ТИОУ с маленьким коэффициентом усиления. Для этого в схему на рисунке 4 включим RF= 10 кОм, при этом коэффициент усиления уменьшится в 10 раз, а полоса пропускания расширится. Однако излучение светодиода теперь должен быть в десять раз ярче для получения того же уровня выходного сигнала. Расчетное значение стабилизирующей емкости CF = 1,7 пФ, а номинальная емкость конденсатора в схеме равна 1,8 пФ. При данных параметрах полюс располагается на частоте 8,8 МГц, а коэффициент усиления с ОС 1/F = 10, это минимально допустимый коэффициент усиления для стабильной работы LMV793.

Таким образом, все условия стабильности работы двухполюсной схемы выполнены, однако при испытаниях в лаборатории выявляется довольно сильный звон схемы. Это могло быть вызвано наличием дополнительных полюсов и нулей, близко расположенных ко второму полюсу. Потребовалась перекомпенсация схемы. Примем CF = 2,7 пФ. На рисунке 6 показана выходная реакция ТИОУ при RF = 10 кОм CF = 2,7 пФ. Времена фронта и среза для данной схемы равны приблизительно 33 нс, отсюда полоса пропускания составляет 10,6 МГц. Полюс располагается на частоте 5,9 МГц. Выходной сигнал ТИОУ для этого случая показан на рисунке 6.

Рис. 6. Выходной сигнал ТИОУ при RF = 10 кОм

Заключение

Устойчивость ТИОУ рассчитывается так же, как и для дифференциального усилителя. Единственная разница между ними заключается в использовании фотодиода в качестве источника входного тока. Фотодиод не влияет на расчет стабильности, его емкость учитывается во входной емкости усилителя.

В лаборатории были протестированы две схемы с разными коэффициентами усиления. Результаты экспериментов сходятся с теоретическими. Выражение (8) для СF применимо для всех видов дифференциальных усилителей, более того, несмотря на различие передаточных характеристик ТИОУ и дифференциального усилителя, выражения для коэффициента передачи сигнала ОС в расчете стабильности обоих усилителей совпадают.

Получение технической информации, заказ образцов, поставка —
e-mail: theory.vesti@compel.ru

LPC3200 — новое семейство 32-разрядных микроконтроллеров

NXP Semiconductors объявила о расширении линейки своей продукции на базе архитектур ARM7TM и ARM9TM, представив семейство микроконтроллеров LPC3200. Микроконтроллеры NXP семейства LPC3200 построены на основе популярного процессора ARM926EJTM и предназначены для использования в бытовых, промышленных, медицинских и автомобильных устройствах. В семейство LPC3200 входят LPC3220, LPC3230, LPC3240 и LPC3250.

Семейство разработано по 90-нм производственному процессу на основе высокопроизводительного ядра ARM926EJ, содержит векторный блок вычислений с плавающей запятой (Vector Floating Point, VFP), контроллер ЖК-монитора, Ethernet MAC, On-The-Go USB, эффективную матрицу шины и поддерживает широкий диапазон стандартных периферийных устройств.

Микроконтроллеры семейства LPC3000 разработаны для обеспечения гибкости в применениях, требующих быстрой и одновременной передачи данных и сочетают в себе высокую производительность, низкое энергопотребление и поддержку большого количества периферийных устройств. В этих устройствах реализованы интерфейсы I2C, I2S, SPI, SSP, UART, USB, OTG, SD, PWM, A/D для сенсорных экранов, имеется адаптер 10/100 Ethernet MAC и 24-разрядный контроллер ЖК-монитора с поддержкой панелей STN и TFT. Семейство поддерживает модули памяти DDR, SDR, SRAM, а также флэш-память. Возможна загрузка с устройств флэш-памяти NAND, памяти SPI, UART или SRAM.

Поставка опытных образцов микроконтроллеров NXP семейства LPC3200 начнется в апреле 2008 года, начало массовых поставок планируется на третий квартал 2008 года.

Наши информационные каналы

Рубрика: статья

История

Операционный усилитель изначально был спроектирован для выполнения математических операций (отсюда его название), путём использования напряжения как аналоговой величины. Такой подход лежит в основе аналоговых компьютеров, в которых ОУ использовались для моделирования базовых математических операций (сложение, вычитание, интегрирование, дифференцирование и т. д.). Однако идеальный ОУ является многофункциональным схемотехническим решением, он имеет множество применений помимо математических операций. Реальные ОУ, основанные на транзисторах, электронных лампах или других активных компонентах, выполненные в виде дискретных или интегральных схем, являются приближением к идеальным.

Ламповый операционный усилитель K2-W

Первые промышленные ламповые ОУ (1940-е годы) выполнялись на паре двойных триодов, в том числе в виде отдельных конструктивных сборок в корпусах с октальным цоколем. В 1963 году Роберт Видлар, инженер фирмы «Fairchild Semiconductor», спроектировал первый интегральный ОУ — μA702. При цене в 300 долларов, прибор, содержавший 9 транзисторов, использовался только в военных применениях. Первый доступный интегральный ОУ, μA709, также спроектированный Видларом, был выпущен в 1965 году; вскоре после выпуска его цена упала ниже 10 долларов, что было всё ещё слишком дорого для бытового применения, но вполне доступно для массовой промышленной автоматики и т. п. гражданских задач.

В 1967 году фирма «National Semiconductor», куда перешёл работать Видлар, выпустила LM101, а в 1968 году фирма Fairchild выпустила ОУ, практически идентичный μA741 — первый ОУ со встроенной частотной коррекцией. ОУ LM101/μA741 был более стабилен и прост в использовании, чем предшественники. Многие производители до сих пор выпускают версии этого классического чипа (их можно узнать по числу «741» в наименовании). Позднее были разработаны ОУ и на другой элементной базе: на полевых транзисторах с p-n переходом (конец 1970-х годов) и с изолированным затвором (начало 1980-х годов), что позволило существенно улучшить ряд характеристик. Многие из более современных ОУ могут быть установлены в схемы, спроектированные для 741 без каких-либо доработок, при этом характеристики схемы только улучшатся.

Применение ОУ в электронике чрезвычайно широко. Операционный усилитель, вероятно, наиболее часто встречающийся элемент в аналоговой схемотехнике. Добавление лишь нескольких внешних компонентов делает из ОУ конкретную схему аналоговой обработки сигналов. Многие стандартные ОУ сто́ят всего несколько центов в крупных партиях (1000 шт), но усилители с нестандартными характеристиками (в интегральном или дискретном исполнении) могут стоить $100 и выше.

Обозначения

Обозначение операционного усилителя на схемах

На рисунке показано схематичное изображение операционного усилителя. Выводы имеют следующее значение:

  • V + {\displaystyle V_{\mathrm {+} }} — неинвертирующий вход;
  • V− — инвертирующий вход;
  • Vout — выход;
  • VS+ — плюс источника питания (также может обозначаться как V D D {\displaystyle V_{\mathrm {DD} }} , V C C {\displaystyle V_{\mathrm {CC} }} , или V C C + {\displaystyle V_{\mathrm {CC+} }} );
  • VS− — минус источника питания (также может обозначаться как V S S {\displaystyle V_{\mathrm {SS} }} , V E E {\displaystyle V_{\mathrm {EE} }} , или V C C − {\displaystyle V_{\mathrm {CC-} }} ).

Указанные пять выводов присутствуют в любом ОУ и необходимы для его функционирования. Однако, существуют операционные усилители, не имеющие неинвертирующего входа. В частности, такие ОУ находят применение в аналоговых вычислительных машинах (АВМ).

ОУ, применяемые в АВМ, принято делить на пять классов, из которых ОУ первого и второго класса имеют только один вход.

Операционные усилители первого класса — усилители высокой точности (УВТ) с одним входом. Предназначены для работы в составе интеграторов, сумматоров, устройств слежения-хранения. Высокий коэффициент усиления, предельно малые значения смещения нуля, входного тока и дрейфа нуля, высокое быстродействие обеспечивают снижение погрешности, вносимой усилителем, ниже 0,01 %.

Операционные усилители второго класса — усилители средней точности (УСТ), имеющие один вход, обладающие меньшим коэффициентом усиления и большими значениями смещения и дрейфа нуля. Эти ОУ предназначены для применения в составе электронных устройств установки коэффициентов, инверторов, электронных переключателей, в функциональных преобразователях, в множительных устройствах.

Помимо этого, некоторые ОУ могут иметь дополнительные выводы (предназначенные, например, для установки тока покоя, частотной коррекции, балансировки или других функций).

Выводы питания (VS+ и VS−) могут быть обозначены по-разному (см. выводы питания интегральных схем). Часто выводы питания не рисуют на схеме, чтобы не загромождать её несущественными деталями, при этом способ подключения этих выводов явно не указывается или считается очевидным (особенно часто это происходит при изображении одного усилителя из микросхемы с четырьмя усилителями с общими выводами питания). При обозначении ОУ на схемах можно менять местами инвертирующий и неинвертирующий входы, если это удобно; выводы питания, как правило, всегда располагают единственным способом (положительный вверху).

Основы функционирования

ОУ 741 в корпусе TO-5

Питание

В общем случае ОУ использует двухполярное питание, то есть источник питания имеет три вывода со следующими потенциалами:

  • U+, к которому подключается VS+;
  • 0 (нулевой потенциал);
  • U-, к которому подключается VS-.

Вывод источника питания с нулевым потенциалом непосредственно к ОУ обычно не подключается, но, как правило, является сигнальной землёй и используется для создания обратной связи. Часто вместо двухполярного используется более простое однополярное, а общая точка создаётся искусственно или совмещается с отрицательной шиной питания.

ОУ способны работать в широком диапазоне напряжений источников питания, типичное значение для ОУ общего применения от ±1,5 В до ±15 В при двухполярном питании (то есть U+ = 1,5…15 В, U- = −15…-1,5 В, допускается значительный перекос).

Простейшее включение ОУ

Рассмотрим работу ОУ как отдельного дифференциального усилителя, то есть без включения в рассмотрение каких-либо внешних компонентов. В этом случае ОУ ведёт себя как обычный усилитель с дифференциальным входом, то есть поведение ОУ описывается следующим образом:

V o u t = ( V + − V − ) ⋅ G o p e n l o o p , {\displaystyle V_{\mathrm {out} }=(V_{+}-V_{-})\cdot G_{\mathrm {openloop} },} (1)

где

  • Vout — напряжение на выходе;
  • V+ — напряжение на неинвертирующем входе;
  • V− —напряжение на инвертирующем входе;
  • Gopenloop — коэффициент усиления при разомкнутой петле, то есть собственный коэффициент усиления ОУ, без обратной связи.

Все напряжения считаются относительно общей точки схемы. Рассматриваемый способ включения ОУ (без обратной связи) практически не используется вследствие присущих ему серьёзных недостатков:

  • собственный коэффициент усиления нормируется в очень широких пределах и может изменяться в тысячи раз (зависит сильнее всего от частоты сигнала и температуры);
  • собственный коэффициент усиления очень велик (типичное значение 106 на постоянном токе) и не поддаётся регулировке;
  • точка отсчёта входного и выходного напряжений не поддаются регулировке.

Идеальный операционный усилитель

Для того, чтобы рассматривать функционирование ОУ в режиме с обратной связью, необходимо вначале ввести понятие идеального операционного усилителя. Идеальный ОУ является физической абстракцией, то есть не может реально существовать, однако позволяет существенно упростить рассмотрение работы схем на ОУ благодаря использованию простых математических моделей.

Идеальный ОУ описывается формулой (1) и обладает следующими характеристиками:

  1. бесконечно большой собственный коэффициент усиления;
  2. бесконечно большое входное сопротивление входов V- и V+, то есть ток, протекающий через эти входы, равен нулю;
  3. нулевое выходное сопротивление выхода ОУ;
  4. способность выставить на выходе любое значение напряжения;
  5. бесконечно большая скорость нарастания напряжения на выходе ОУ;
  6. полоса пропускания от постоянного тока до бесконечности.

Пункты 5 и 6 в действительности следуют из формулы (1), поскольку в неё не входят временны́е задержки и фазовые сдвиги. Из формулы (1) следует, что для поддержания нужного напряжения на выходе необходимо поддерживать следующую разность входных напряжений:

V + − V − = V o u t G o p e n l o o p {\displaystyle V_{+}-V_{-}={\frac {V_{\mathrm {out} }}{G_{\mathrm {openloop} }}}}

Так как собственный коэффициент усиления идеального ОУ бесконечно большой, то разность входных напряжений стремится к нулю. Отсюда следует важнейшее свойство идеального ОУ, упрощающее рассмотрение схем с его использованием:

Идеальный ОУ, охваченный отрицательной обратной связью, поддерживает одинаковое напряжение на своих входах

Другими словами, при указанных условиях всегда выполняется равенство:

V + − V − = 0 {\displaystyle V_{+}-V_{-}=0} (2)

Не следует думать, что ОУ выравнивает напряжения на своих входах, подавая напряжение на входы «изнутри». На самом деле ОУ выставляет на выходе такое напряжение, которое через обратную связь подействует на входы таким образом, что разность входных напряжений уменьшится до нуля.

Легко убедиться в справедливости равенства (2). Допустим, (2) нарушено — имеет место небольшая разность напряжений. Тогда входное дифференциальное напряжение, усиленное в ОУ, вызвало бы (вследствие бесконечного коэффициента усиления) бесконечно большое выходное напряжение, которое, в соответствии с определением ООС, ещё уменьшило бы разность входных напряжений. И так до тех пор, пока равенство (2) не будет выполнено. Заметим, что выходное напряжение может быть любым — оно определяется видом обратной связи и входным напряжением.

Простейшие схемы с обратной связью

Из рассмотрения принципа работы идеального ОУ следует очень простая методика проектирования схем:

Пусть необходимо построить цепь на ОУ с требуемыми свойствами. Требуемые свойства заключаются прежде всего в заданном состоянии выхода (выходное напряжение, выходной ток и т. д.), которое, возможно, зависит от какого-либо входного воздействия. Для создания схемы нужно подключить к ОУ такую обратную связь, чтобы при требуемом выходном состоянии достигалось равенство напряжений на входах ОУ (инвертирующем и неинвертирующем), а обратная связь была бы отрицательной.

Таким образом, требуемое состояние системы будет устойчивым состоянием равновесия, и система будет в нем находиться неограниченно долго. Пользуясь этим упрощённым подходом, несложно получить простейшую схему неинвертирующего усилителя.

От усилителя требуется наличие на выходе напряжения, отличающегося от входного в K {\displaystyle K} раз, то есть U o u t = U i n ⋅ K {\displaystyle U_{out}=U_{in}\cdot K} . В соответствии с приведённой выше методикой подадим на неинвертирующий вход ОУ сам входной сигнал, а на инвертирующий — часть выходного сигнала с резистивного делителя.

Неинвертирующий усилитель

Расчёт реального коэффициента усиления для идеального (или реального, но который можно с определёнными допущениями считать идеальным) усилителя очень прост. Заметим, что в том случае, когда усилитель находится в состоянии равновесия, напряжения на его входах можно считать одинаковыми. Исходя из этого следует, что падение напряжения на резисторе R 1 {\displaystyle R_{1}} равно V i n {\displaystyle V_{in}} , а на всём делителе сопротивлением R 1 + R 2 {\displaystyle R_{1}+R_{2}} , падает V o u t {\displaystyle V_{out}} . Заметим, что, поскольку входное сопротивление операционного усилителя очень велико, то током, поступающим на инвертирующий (−) вход усилителя можно пренебречь, и ток, протекающий через резисторы делителя, можно принять одинаковым. Ток через R 1 {\displaystyle R_{1}} равен I R 1 = V i n R 1 {\displaystyle I_{R_{1}}={\frac {V_{in}}{R_{1}}}} , а через весь делитель I R 1 + R 2 = V o u t R 1 + R 2 {\displaystyle I_{R_{1}+R_{2}}={\frac {V_{out}}{R_{1}+R_{2}}}} .

Таким образом:

I R 1 = I R 1 + R 2 {\displaystyle I_{R_{1}}=I_{R_{1}+R_{2}}}

Откуда:

V i n R 1 = V o u t R 1 + R 2 {\displaystyle {\frac {V_{in}}{R_{1}}}={\frac {V_{out}}{R_{1}+R_{2}}}}

V o u t = V i n ⋅ R 1 + R 2 R 1 = V i n ⋅ ( 1 + R 2 R 1 ) {\displaystyle V_{out}=V_{in}\cdot {\frac {R_{1}+R_{2}}{R_{1}}}=V_{in}\cdot \left(1+{\frac {R_{2}}{R_{1}}}\right)}

Можно рассуждать немного проще, сразу заметив, что V o u t V i n = R 1 + R 2 R 1 {\displaystyle {\frac {V_{out}}{V_{in}}}={\frac {R_{1}+R_{2}}{R_{1}}}} .

Следует обратить внимание, что в неинвертирующей схеме включения коэффициент усиления напряжения всегда больше или равен 1, вне зависимости от номиналов используемых резисторов. Если сопротивление R 2 {\displaystyle R_{2}} равно нулю, то мы получаем неинвертирующий повторитель напряжения имеющий коэффициент усиления напряжения 1.

А поскольку:

∀ n ∈ R + lim n → ∞ 0 n = 0 {\displaystyle \forall n\in \mathbb {R} ^{+}\lim _{n\to \infty }{\frac {0}{n}}=0} ,

то сопротивление R 1 {\displaystyle R_{1}} можно попросту убрать, приняв его равным бесконечности.

Таким образом, коэффициент передачи усилителя, построенного на ОУ с достаточно большим усилением, практически зависит только от параметров обратной связи. Это полезное свойство позволяет проектировать системы с очень стабильным коэффициентом передачи, необходимые, например, при измерениях и обработке сигналов.

Инвертирующий усилитель

Для операционного усилителя, включенного по инвертирующей схеме, расчёт при принятых допущениях тоже не представляет сложности. Для этого следует заметить, что напряжение в средней точке делителя, а именно на инвертирующем входе (−) усилителя равно 0 (так называемая виртуальная земля). Отсюда падения напряжения на резисторах равны, соответственно, входному и выходному напряжениям. Ток через резисторы тоже можно принять одинаковым, поскольку через инвертирующий вход (−) ток практически отсутствует, как было указано выше.

Отсюда:

V i n R i n = − V o u t R f {\displaystyle {\frac {V_{in}}{R_{in}}}=-{\frac {V_{out}}{R_{f}}}}

V o u t = − V i n ⋅ R f R i n {\displaystyle V_{out}=-V_{in}\cdot {\frac {R_{f}}{R_{in}}}}

Следует обратить внимание, что в инвертирующей схеме включения коэффициент усиления может быть как больше, так и меньше единицы и зависит от номиналов резисторов делителя. То есть усилитель может использоваться как активный аттенюатор (ослабитель) входного напряжения. Преимуществом этого решения над пассивным аттенюатором заключается в том, что с точки зрения источника сигнала аттенюатор выглядит как обычный резистор нагрузки, подключенный между сигналом и землёй (в данном случае так называемой «виртуальной»), то есть является обычной активной нагрузкой (разумеется, без учёта паразитных ёмкостей и индуктивностей). Это значительно упрощает расчёт влияния нагрузки на источник сигнала и их взаимное согласование.

Отличия реальных ОУ от идеального

Параметры ОУ, характеризующие его неидеальность, можно разбить на группы:

Параметры по постоянному току

  • Ограниченное усиление: коэффициент Gopenloop не бесконечен (типичное значение 105 ÷ 106 на постоянном токе). Этот эффект заметно проявляется только в случаях, когда коэффициент передачи каскада с ОУ отличается от параметра Gopenloop в небольшое число раз (усиление каскада отличается от Gopenloop на 1÷2 порядка или еще меньше).
  • Ненулевой входной ток (или, что почти то же самое, ограниченное входное сопротивление): типичные значения входного тока составляют 10−9 ÷ 10−12 А. Это накладывает ограничения на максимальное значение сопротивлений в цепи обратной связи, а также на возможности согласования по напряжению с источником сигнала. Некоторые ОУ имеют на входе дополнительные цепи для защиты входа от чрезмерного напряжения — эти цепи могут значительно ухудшить входное сопротивление. Поэтому некоторые ОУ выпускаются в защищенной и незащищенной версии.
  • Ненулевое выходное сопротивление. Данное ограничение не имеет большого значения на низких частотах или при небольшой ёмкости нагрузки, так как наличие обратной связи эффективно уменьшает выходное сопротивление каскада на ОУ (практически до сколь угодно малых значений).
  • Ненулевое напряжение смещения: требование о равенстве входных напряжений в активном состоянии для реальных ОУ выполняется не совсем точно — ОУ стремится поддерживать между своими входами не точно ноль вольт, а некоторое небольшое напряжение (напряжение смещения). Другими словами, реальный ОУ ведет себя как идеальный ОУ, у которого внутри последовательно с одним из входов включен генератор напряжения с ЭДС Uсм. Напряжение смещения — очень важный параметр, он ограничивает точность ОУ, например, при сравнении двух напряжений. Типичные значения Uсм составляют 10-3 ÷ 10-6 В.
  • Ненулевое усиление синфазного сигнала. Идеальный ОУ усиливает только разницу входных напряжений, сами же напряжения значения не имеют. В реальных ОУ значение входного синфазного напряжения оказывает некоторое влияние на выходное напряжение. Данный эффект определяется параметром коэффициент ослабления синфазного сигнала (КОСС, англ. common-mode rejection ratio, CMRR), который показывает, во сколько раз приращение напряжения на выходе меньше, чем вызвавшее его приращение синфазного напряжения на входе ОУ. Типичные значения: 104 ÷ 106.

Параметры по переменному току

  • Ограниченная полоса пропускания. Любой усилитель имеет конечную полосу пропускания, но фактор полосы не особенно значим для ОУ, поскольку они имеют внутреннюю частотную коррекцию для увеличения запаса по фазе.
  • Ненулевая входная ёмкость. Образует паразитный фильтр высоких частот.
  • Ненулевая задержка сигнала. Данный параметр, косвенно связанный с ограничением полосы пропускания, может ухудшить действие ООС при повышении рабочих частот.
  • Ненулевое время восстановления после насыщения .

Нелинейные эффекты

  • Насыщение — ограничение диапазона возможных значений выходного напряжения. Обычно выходное напряжение не может выйти за пределы напряжения питания. Насыщение имеет место в случае, когда выходное напряжение «должно быть» больше максимального или меньше минимального выходного напряжения. ОУ не может выйти за пределы, и выступающие части выходного сигнала «срезаются» (то есть ограничиваются).

В моменты насыщения усилитель не действует в соответствии с формулой (1), что вызывает отказ в работе ООС и появлению разности напряжений на его входах, что обычно является признаком неисправности схемы (и это легко обнаруживаемый наладчиком признак проблем). Исключение — работа ОУ в режиме компаратора.

  • Искажение входного П-образного сигнала при ограниченной скорости нарастания выходного сигнала ОУ. Ограниченная скорость нарастания. Выходное напряжение ОУ не может измениться мгновенно. Скорость изменения выходного напряжения измеряется в вольтах за микросекунду, типичные значения 1÷100 В/мкс. Параметр обусловлен временем, необходимым для перезаряда внутренних ёмкостей. Ограниченная скорость нарастания выходного напряжения приводит к появлению особого рода динамических искажений сигнала в усилителях на ОУ. Причина их появления состоит в том, что в первый момент после подачи на вход скачка напряжения, отрицательная обратная связь ОУ оказывается разомкнутой, и первый каскад ОУ входит в режим насыщения, обогащая сигнал гармоническими и интермодуляционными искажениями.

Ограничения тока и напряжения

  • Ограниченное выходное напряжение. У любого ОУ потенциал на выходе не может быть выше, чем потенциал положительной шины питания и не может быть ниже, чем потенциал отрицательной шины питания (в случае, если нагрузка отсутствует, или является резистивной и не содержит источник тока). Другими словами, выходное напряжение не может выйти за пределы питающего напряжения. Например, для ОУ opa277 выходное напряжение находится в пределах от VS−+0,5 В до VS+−2 В при сопротивлении нагрузки 10 кОм. Ширина этих «мертвых зон» выходного напряжения, которых выход ОУ не может достичь, зависит от ряда условий (сопротивление нагрузки, направление выходного тока и др.). Существуют ОУ, у которых мертвые зоны минимальны, например, по 50 мВ до шин питания при нагрузке 10 кОм для opa340, эта особенность ОУ называется «rail-to-rail» (от шины до шины).
  • Ограниченный выходной ток. Большинство ОУ широкого применения имеют встроенную защиту от превышения выходного тока — типичное значение максимального тока 25 мА. Защита предотвращает перегрев и выход ОУ из строя.

Мощные ОУ, такие как К157УД1, могут иметь крепление для радиатора

  • Ограниченная выходная мощность. Большинство ОУ предназначено для применений, не требовательных к мощности: сопротивление нагрузки не должно быть менее 2 кОм.

Классификация ОУ

По типу элементной базы

  • На полевых транзисторах
  • На биполярных транзисторах
  • На баллистических транзисторах
  • На электронных лампах

По области применения

Выпускаемые промышленностью операционные усилители постоянно совершенствуются, параметры ОУ приближаются к идеальным. Однако улучшить все параметры одновременно технически невозможно или нецелесообразно из-за дороговизны полученного чипа. Для того, чтобы расширить область применения ОУ, выпускаются различные их типы, в каждом из которых один или несколько параметров являются выдающимися, а остальные на обычном уровне (или даже чуть хуже). Это оправдано, так как в зависимости от сферы применения от ОУ требуется высокое значение того или иного параметра, но не всех сразу. Отсюда вытекает классификация ОУ по областям применения.

  • Индустриальный стандарт. Так называют широко применяемые, очень дешевые ОУ общего применения со средними характеристиками. Пример «классических» ОУ: с биполярным входом — LM324, с полевым входом — TL084.
  • Прецизионные ОУ имеют очень малые напряжения смещения, применяются в точных измерительных схемах. Обычно ОУ на биполярных транзисторах по этому показателю несколько лучше, чем на полевых. Также от прецизионных ОУ требуется долговременная стабильность параметров. Исключительно малыми смещениями обладают стабилизированные прерыванием ОУ. Примеры: AD707, AD708, с напряжением смещения 30 мкВ, а также новейшие AD8551 с типичным напряжением смещения 1 мкВ.
  • С малым входным током (электрометрические) ОУ. Все ОУ, имеющие полевые транзисторы на входе, обладают малым входным током. Но среди них существуют специальные ОУ с исключительно малым входным током. Чтобы полностью реализовать их преимущества, при проектировании устройств с их использованием необходимо даже учитывать утечку тока по печатной плате. Пример: AD549 с входным током 6⋅10−14 А.
  • Микромощные и программируемые ОУ потребляют малый ток на собственное питание. Такие ОУ не могут быть быстродействующими, так как малый потребляемый ток и высокое быстродействие — взаимоисключающие требования. Программируемыми называются ОУ, для которых все внутренние токи покоя можно задать с помощью внешнего тока, подаваемого на специальный вывод ОУ.
  • Мощные (сильноточные) ОУ могут отдавать большой ток в нагрузку, то есть допустимое сопротивление нагрузки меньше стандартных 2 кОм, и может составлять до 50 Ом.
  • Низковольтные ОУ работоспособны при напряжении питания 3 В и даже ниже. Как правило, они имеют rail-to-rail выход.
  • Высоковольтные ОУ. Все напряжения для них (питания, синфазное входное, максимальное выходное) значительно больше, чем для ОУ широкого применения.
  • Быстродействующие ОУ имеют высокую скорость нарастания и частоту единичного усиления. Такие ОУ не могут быть микромощными, и как правило выполнены на биполярных транзисторах.
  • Малошумящие ОУ.
  • Звуковые ОУ. Имеют минимально возможный коэффициент гармоник (THD). Примеры: LM4562 (THD 0,00003 %), OPA2132 (THD 0,00008 %), LME49600 (THD 0,00003 %), AD797 (THD 0,0001 %) и т. п.
  • Для однополярного питания. CMOS ОУ обеспечивают выходное напряжение, практически равное напряжению питания (rail-to-rail, R2R), биполярные ОУ — примерно на 1.2 В меньше, что существенно при небольших значениях Ucc.
  • Разностные ОУ (англ. Difference Amplifier, не путать с Differential amplifier). Имеют выдающийся коэффициент ослабления синфазного напряжения (англ. CMRR). Измеряют малые напряжения на фоне сильных помех, что характерно, к примеру, для токовых шунтов. Примеры: INA214, INA333.
  • ОУ (или точнее, готовые усилительные каскады) с переменным коэффициентом усиления.
  • Специализированные ОУ. Обычно разработаны для конкретных задач: например, подключение фотодатчика или магнитной головки ко входу; динамического громкоговорителя к выходу. Могут содержать в себе готовые цепи ООС или отдельные необходимые для этого прецизионные резисторы.

Возможны также комбинации данных категорий, например, прецизионный быстродействующий ОУ.

Другие классификации

По входным сигналам:

  • Обычный двухвходовый ОУ;
  • ОУ с тремя входами: третий вход, имеющий коэффициент передачи +1 (для чего используется внутренняя ООС), используется для расширения возможностей ОУ, например, смещение по напряжению выходных сигналов относительно входных, или возможность построения каскада с высоким выходным сопротивлением синфазному сигналу, что напоминает трансформатор с двумя обмотками, однако каскад на AD8132 передаёт и постоянный ток, что трансформатор не может.

По выходным сигналам:

  • Обычный ОУ с одним выходом;
  • ОУ с дифференциальным выходом

Литература

  • Полонников Д. Е. Операционные усилители. Принципы построения, теория, схемотехника. — М., Энергоатомиздат, 1983. — 216 c.

Операционные усилители являются одними из основных компонентов в современных аналоговых электронных устройствах. Благодаря простоте расчетов и отличным параметрам, операционные усилители легки в применении. Их также называют дифференциальными усилителями, так как они способны усилить разность входных напряжений.

Особенно популярно использование операционных усилителей в звуковой технике, для усиления звучания музыкальных колонок.

Обозначение на схемах

Из корпуса усилителя обычно выходят пять выводов, из которых два вывода – входы, один – выход, остальные два – питание.

Принцип действия

Существуют два правила, помогающие понять принцип действия операционного усилителя:

  1. Выход операционного усилителя стремится к нулевой разности напряжений на входах.
  2. Входы усилителя не расходуют ток.

Первый вход обозначен «+», он называется неинвертирующим. Второй вход обозначен знаком «–», считается инвертирующим.

Входы усилителя имеют высокое сопротивление, называемое импедансом. Это позволяет расходовать ток на входах в несколько наноампер. На входе происходит оценка величины напряжений. В зависимости от этой оценки усилитель выдает на выход усиленный сигнал.

Большое значение имеет коэффициент усиления, который иногда достигает миллиона. Это означает, что если на вход подать хотя бы 1 милливольт, то на выходе напряжение будет равно величине напряжения источника питания усилителя. Поэтому операционники не применяют без обратной связи.

Входы усилителя действуют по следующему принципу: если напряжение на неинвертирующем входе будет выше напряжения инвертирующего входа, то на выходе окажется наибольшее положительное напряжение. При обратной ситуации на выходе будет наибольшее отрицательное значение.

Отрицательное и положительное напряжение на выходе операционного усилителя возможно из-за использования источника питания, обладающего расщепленным двуполярным напряжением.

Питание операционного усилителя

Если взять пальчиковую батарейку, то у нее два полюса: положительный и отрицательный. Если отрицательный полюс считать за нулевую точку отсчета, то положительный полюс покажет +1,5 В. Это видно по подключенному мультиметру.

Взять два элемента и подключить их последовательно, то получается следующая картина.

Если за нулевую точку принять отрицательный полюс нижней батарейки, а напряжение измерять на положительном полюсе верхней батарейки, то прибор покажет +10 вольта.

Если за ноль принять среднюю точку между батарейками, то получается источник двуполярного напряжения, так как имеется напряжение положительной и отрицательной полярности, равной соответственно +5 вольта и -5 вольта.

Существуют простые схемы блоков с расщепленным питанием, использующиеся в конструкциях радиолюбителей.

Питание на схему подается от бытовой сети. Трансформатор понижает ток до 30 вольт. Вторичная обмотка в середине имеет ответвление, с помощью которого на выходе получается +15 В и -15 В выпрямленного напряжения.

Разновидности

Существует несколько разных схем операционных усилителей, которые стоит рассмотреть подробно.

Инвертирующий усилитель

Такая схема является основной. Особенностью этой схемы является то, что операционники характеризуются кроме усиления, еще и изменением фазы. Буква «k» обозначает параметр усиления. На графике изображено влияние усилителя в данной схеме.

Синий цвет отображает входной сигнал, а красный цвет – выходной сигнал. Коэффициент усиления в этом случае равен: k = 2. Амплитуда сигнала на выходе в 2 раза больше, сигнала на входе. Выходной сигнал усилителя перевернут, отсюда и его название. Инвертирующие операционные усилители имеют простую схему:

Такие операционные усилители стали популярными из-за своей простой конструкции. Для вычисления усиления применяют формулу:

Отсюда видно, что усиление операционника не зависит от сопротивления R3, поэтому можно обойтись без него. Здесь он применяется для защиты.

Неинвертирующие операционные усилители

Эта схема подобна предыдущей, отличием является отсутствие инверсии (перевернутости) сигнала. Это означает сохранение фазы сигнала. На графике изображен усиленный сигнал.

Коэффициент усиления неинвертирующего усилителя также равен: k = 2. На вход подается сигнал в форме синусоиды, на выходе изменилась только ее амплитуда.

Эта схема не менее простая, чем предыдущая, в ней имеется два сопротивления. На входе сигнал подается на плюсовой вывод. Для расчета коэффициента усиления требуется использовать формулу:

Из нее видно, что коэффициент усиления не бывает меньше единицы, так как сигнал не подавляется.

Схема вычитания

Эта схема дает возможность создания разности двух сигналов на входе, которые могут быть усилены. На графике показан принцип действия дифференциальной схемы.

Такую схему усилителя еще называют схемой вычитания.

Она имеет более сложную конструкцию, в отличие от рассмотренных ранее схем. Для расчета выходного напряжения пользуются формулой:

Левая часть выражения (R3/R1) определяет коэффициент усиления, а правая часть (Ua – Ub) является разностью напряжений.

Схема сложения

Такую схему называют интегрированным усилителем. Она противоположна схеме вычитания. Особенностью ее является возможность обработки больше двух сигналов. На таком принципе действуют все звуковые микшеры.

Эта схема показывает возможность суммирования нескольких сигналов. Для расчета напряжения применяется формула:

Схема интегратора

Если в схему добавить конденсатор в обратную связь, то получится интегратор. Это еще одно устройство, в котором используются операционные усилители.

Схема интегратора подобна инвертирующему усилителю, с добавлением емкости в обратную связь. Это приводит к зависимости работы системы от частоты сигнала на входе.

Интегратор характеризуется интересной особенностью перехода между сигналами: сначала прямоугольный сигнал преобразуется в треугольный, далее он переходит в синусоидальный. Расчет коэффициента усиление проводится по формуле:

В этой формуле переменная ω = 2πf повышается с возрастанием частоты, следовательно, чем больше частота, тем коэффициент усиления меньше. Поэтому интегратор может действовать в качестве активного фильтра низких частот.

Схема дифференциатора

В этой схеме получается обратная ситуация. На входе подключена емкость, а в обратной связи подключено сопротивление.

Судя по названию схемы, ее принцип работы заключается в разнице. Чем больше скорость изменения сигнала, тем больше величина коэффициента усиления. Этот параметр дает возможность создавать активные фильтры для высокой частоты.

Коэффициент усиления для дифференциатора рассчитывается по формуле:

Это выражение обратно выражению интегратора. Коэффициент усиления повышается в отрицательную сторону с возрастанием частоты.

Аналоговый компаратор

Устройство компаратора сравнивает два значения напряжения и переводит сигнал в низкое или высокое значение на выходе, в зависимости от состояния напряжения. Эта система включает в себя цифровую и аналоговую электронику.

Особенностью этой системы является отсутствие в основной версии обратной связи. Это означает, что сопротивление петли очень велико.

На плюсовой вход подается сигнал, а на минусовой вход подается основное напряжение, которое задается потенциометром. Ввиду отсутствия обратной связи коэффициент усиления стремится к бесконечности.

При превышении напряжения на входе величины основного опорного напряжения, на выходе получается наибольшее напряжение, которое равно положительному питающему напряжению. Если на входе напряжение будет меньше опорного, то выходным значением будет отрицательное напряжение, равное напряжению источника питания.

В схеме аналогового компаратора имеется значительный недостаток. При приближении значений напряжения на двух входах друг к другу, возможно частое изменение выходного напряжения, что обычно приводит к пропускам и сбоям в работе реле. Это может привести к нарушению работы оборудования. Для решения этой задачи применяют схему с гистерезисом.

Аналоговый компаратор с гистерезисом

На рисунке показана схема действия схемы с гистерезисом, которая аналогична предыдущей схеме. Отличием является то, что выключение и включение не происходит при одном напряжении.

Направление стрелок на графике указывает направление перемещения гистерезиса. При рассмотрении графика слева направо видно, что переход к более низкому уровню осуществляется при напряжении Uph, а двигаясь справа налево, напряжение на выходе достигнет высшего уровня при напряжении Upl.

Такой принцип действия приводит к тому, что при равных значениях входных напряжений, состояние на выходе не изменяется, так как для изменения требуется разница напряжений на существенную величину.

Такая работа схемы приводит к некоторой инертности системы, однако это более безопасно, в отличие от схемы без гистерезиса. Обычно такой принцип действия применяется в нагревательных приборах с наличием термостата: плиты, утюги и т.д. На рисунке изображена схема усилителя с гистерезисом.

Напряжения рассчитываются по следующим зависимостям:

Повторители напряжения

Операционные усилители часто применяются в схемах повторителей напряжения. Основной особенностью этих устройств является то, что в них не происходит усиления или ослабления сигнала, то есть, коэффициент усиления в этом случае равен единице. Такая особенность связана с тем, что петля обратной связи имеет сопротивление, равное нулю.

Такие системы повторителей напряжения чаще всего используются в качестве буфера для увеличения нагрузочного тока и работоспособности устройства. Так как входной ток приближен к нулю, а ток на выходе зависит от вида усилителя, то есть возможность разгрузки слабых источников сигнала, например, некоторых датчиков.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *