Опубликовано

Схема на к561тм2


Как работает RS-триггер? У него имеются два входа и два выхода, входы обозначим R и S, а выходы Q (прямой) и Q (инверсный). Когда единичный импульс поступает на вход S триггер устанавливается в единичное состояние и на его выходе Q будет единица (на выходе Q будет ноль, поскольку выход инверсный).
Заметим, что уровни на выводах 1 и 2 противоположны, поскольку вывод 2 — инверсный выход (как будто-бы сигнал с вывода 2 подали на инвертор, и снимают с его выхода). Таким образом, когда триггер в единичном состоянии на выводе 2 будет ноль, а когда в нулевом, на этом выводе будет единица.
Рис.2
Если соединить вход D триггера с его инверсным выходом можно получить интересный эффект, — частота импульсов, поступающих на вход С будет делится триггером ровно на два, и на его выходе частота импульсов будет в два раза ниже чем частота импульсов поступающих на С. Для изучения этого эффекта соберем схему, показанную на рисунке 5.
Предположим в исходном положении триггер находится в нулевом состоянии, то есть на его выводе 1 — нуль. Поскольку на прямом выходе (вывод 1) нуль, то на инверсном выходе (вывод 2) все должно быть наоборот, и следовательно там единица. Эта единица поступает на вход D триггера. Теперь посмотрим, что произойдет если нажать и отпустить кнопку S1.
В момент её нажатия на выходе (на прямом выходе) триггера установится именно такой уровень, как на входе D, то есть, если триггер в нулевом состоянии, и на D поступает единица с его инверсного выхода, то в момент нажатия на S1 триггер установится в единичное состоянии. И будет находится в таком состоянии и после отпускания S1. Но поскольку, триггер теперь уже находится в единичном состоянии, и на его выводе 1 (прямом выходе) единица, то на инверсном выходе (вывод 2), естественно, будет ноль. А значит ноль будет и на входе D. Нажав второй раз на S1 триггер перейдет снова в нулевое состояние.
Таким образом, на вход С мы подали два импульса (два раза нажимали на кнопку S1), а на выходе получился только один импульс (по пол-импульса на каждое нажатие). Если на вход С такого делителя частоты на два, подать импульсы с выхода, например мультивибратора, то частота этих импульсов на выходе триггера будет в два раза ниже чем на выходе мультивибратора.
Рис.6
На рисунке 6 показана диаграмма работы такого делителя частоты. В исходном состоянии на выходе триггера (вывод 1) нуль, нуль также и на входе С (вывод 3). В момент нажатия на кнопку S1 на входе С (вывод 3.) уровень меняется с нулевого на единичный, тоже самое происходит и на выходе триггера (вывод 1). Затем мы отпускаем кнопку S1 и уровень на входе С (вывод 3) меняется на нулевой. Но несмотря на это на выходе по прежнему единица. Теперь снова нажимаем на S1 , — подаем единицу на вход С (вывод 3). В этот момент уровень на выходе меняется на нулевой, и остается таким и после отпускания кнопки.
При экспериментах с D-триггером возможны сбои в работе схемы по рисунку 5, потому что контакты кнопки имеют неприятную способность дребезжать, и этот дребезг дает вместо одного нажатия на кнопку несколько нажатий подряд. Простейшим способом подавить этот дребезг можно если параллельно R1 включить электролитический конденсатор на 5-15 мкФ (типа К50-35), плюсом к кнопке, а минусом к минусу питания.
Рис.7
Но в цифровой технике применяется другой способ — используется RS-триггер и переключающая кнопка. Схема такого бездребезгового формирователя импульсов показана на рисунке 7 (используется второй триггер микросхемы К561ТМ2 или К176ТМ2).

Цифровые микросхемы — начинающим (занятие 6) — К561ТМ2 D-триггеры

На прошлом занятии мы познакомились с работой RS-триггера, построенного на двух логических элементах 2ИЛИ-НЕ.

Работали с микросхемой К561ЛЕ5 (К176ЛЕ5), эта микросхема содержит четыре элемента 2ИЛИ- НЕ и на ней можно собрать два RS-триггера.

Вспомним как работает RS-триггер (рис. 1). У него имеются два входа и два выхода, входы обозначим R и S, а выходы Q (прямой) и Q (инверсный). Когда единичный импульс поступает на вход S триггер устанавливается в единичное состояние и на его выходе Q будет единица (на выходе Q будет ноль, поскольку выход инверсный). Такое состояние сохранится и если убрать единицу с входа S. И оно будет сохраняться до тех пор, пока на вход R не будет подан единичный импульс, тогда триггер «перекинется» в противоположное состояние, и на Q будет ноль, а на Q — единица. Таким образом RS-триггер может быть в двух устойчивых состояниях — единичном, когда на выходе Q единица, и нулевом, когда на Q ноль.

На схемах RS-триггер обозначается так, как показано внизу рисунка 1. Таким образом RS- триггер становится еще одной «элементарной частицей» цифровой схемы, «черным ящичком», имеющим строго определенные функции : подал единичный импульс на S и на Q будет единица, подал единичный_импульс на R и на Q теперь будет ноль (а на Q — все наоборот).

В сериях К176 и К561 есть только одна микросхема, содержащая RS-триггеры в «чистом виде» — это К561ТР2, причем только в серии К561 (К176ТР2 не бывает). Схема микросхемы К561ТР2 показана на рисунке 2.

Она содержит четыре RS-триггера, имеющих только по одному прямому выходу (Q), которые к тому же можно отключать от выходных выводов микросхемы при помощи внутреннего ключевого устройства. При подаче единицы на вывод 5 эти ключи замыкаются и уровни с выходов триггеров поступают на выходные выводы микросхемы, а если на вывод 5 подать нуль, то ключи разомкнутся и выходы триггеров отключатся от выходных выводов микросхемы (на этих выводах, в таком случае, будет «серый уровень»или «высокоимпендансное состояние», то есть они, практически, никуда не будут подключены). Корпус у этой микросхемы почти такой же как у К561ЛЕ5 или К561ЛА7, но у него на два вывода больше, то есть с каждого бока микросхемы не по семь выводов, а по восемь.

Кроме RS-триггеров существуют еще и D- триггеры, с которыми нам предстоит познакомиться на этом занятии.

Распространенная микросхема К561ТМ2 (или К176ТМ2) содержит два D-триггера (рисунок 3).

Микросхема имеет точно такой же корпус как у К561ЛЕ5, K561J1A7 (К176ЛЕ5, К176ЛА7). Как видно из рисунка отличие D-триггера от RS- триггера в том, что у него есть два новых входа — вход D и вход С.

Чтобы изучить работу D-триггера соберем схему, показанную на рисунке 4.

S1 — кнопка, S2 — микротумблер, но как и прежде, если нет кнопок, можно просто соединять два оголенных монтажных провода. Прибор Р1 — любой тестер или мультиметр, переключенный на измерение напряжения до 10-15В, когда он будет показывать напряжение, почти равное напряжению питания, — это единица, когда почти ноль — это ноль. Батарея питания составлена из двух «плоских батареек» по 4,5В каждая, так что в сумме они дают 9В (включены последовательно).

Входы S и R триггера соединим с общим минусом питания, как работает RS-триггер мы знаем, так что, пусть они нам не мешают.

В момент включения питания триггер окажется в одном из двух положений, либо ноль на выводе 1, либо на нем же единица. Если нужно установить его принудительно в какое-то положение это можно сделать выводами R и S как в RS-триггере, но нам это не нужно. Предположим на выходе нуль (низкие показания Р1). Если мы будем нажимать на S1 ничего не изменится. Но если сначала замкнуть S2 (на вход D подать единицу), а потом, удерживая S2 в замкнутом состоянии, нажать на S1 то триггер перекинется в единичное состояние, и на его выводе 1 будет единица (напряжение около напряжения питания). Теперь, удерживая S2 по-прежнему в нажатом состоянии, попробуем снова нажать на S1 — ничего не меняется. Триггер жестко держится в единичном состоянии. Попробуем разомкнуть S2 (теперь на вход D поступает ноль через R2). Снова нажмем на S1 — триггер вернется в нулевое состояние (нуль на выводе 1). Таким образом, при нажатии на S1 триггер устанавливается в такое положение, при котором логический уровень на его прямом выходе будет таким же как на входе D. После отпускания S1, триггер останется в установившемся положении, ему будет «все равно», что на входе D, если на входе С (кнопка S1) нуль. То есть, если на входе D будет единица, то в момент нажатия на S1 (подача единицы на вход С) состояние триггера станет единичным (единица на выводе 1), и останется таким и после отпускания S1 и изменения уровня на D. Но если на D подать нуль, и удерживая этот нуль, нажать на S1 (подать единицу на С), то триггер перейдет в нулевое положение.

Заметим, что уровни на выводах 1 и 2 противоположны, поскольку вывод 2 — инверсный выход (как будто-бы сигнал с вывода 2 подали на инвертор, и снимают с его выхода). Таким образом, когда триггер в единичном состоянии на выводе 2 будет ноль, а когда в нулевом, на этом выводе будет единица.

Если соединить вход D триггера с его инверсным выходом можно получить интересный эффект, — частота импульсов, поступающих на вход С будет делится триггером ровно на два, и на его выходе частота импульсов будет в два раза ниже чем частота импульсов поступающих на С.

Для изучения этого эффекта соберем схему, показанную на рисунке 5. Предположим в исходном положении триггер находится в нулевом состоянии, то есть на его выводе 1 — нуль. Поскольку на прямом выходе (вывод 1) нуль, то на инверсном выходе (вывод 2) все должно быть наоборот, и следовательно там единица. Эта единица поступает на вход D триггера. Теперь посмотрим, что произойдет если нажать и отпустить кнопку S1. В момент её нажатия на выходе (на прямом выходе) триггера установится именно такой уровень, как на входе D, то есть, если триггер в нулевом состоянии, и на D поступает единица с его инверсного выхода, то в момент нажатия на S1 триггер установится в единичное состоянии. И будет находится в таком состоянии и после отпускания S1. Но поскольку, триггер теперь уже находится в единичном состоянии, и на его выводе 1 (прямом выходе) единица, то на инверсном выходе (вывод 2), естественно, будет ноль. А значит ноль будет и на входе D. Нажав второй раз на S1 триггер перейдет снова в нулевое состояние.

Таким образом, на вход С мы подали два импульса (два раза нажимали на кнопку S1), а на выходе получился только один импульс (по пол-импульса на каждое нажатие). Если на вход С такого делителя частоты на два, подать импульсы с выхода, например мультивибратора, то частота этих импульсов на выходе триггера будет в два раза ниже чем на выходе мультивибратора.

На рисунке 6 показана диаграмма работы такого делителя частоты.

В исходном состоянии на выходе триггера (вывод 1) нуль, нуль также и на входе С (вывод 3). В момент нажатия на кнопку S1 на входе С (вывод 3.) уровень меняется с нулевого на единичный, тоже самое происходит и на выходе триггера (вывод 1). Затем мы отпускаем кнопку S1 и уровень на входе С (вывод 3) меняется на нулевой. Но несмотря на это на выходе по прежнему единица. Теперь снова нажимаем на S1 , — подаем единицу на вход С (вывод 3). В этот момент уровень на выходе меняется на нулевой, и остается таким и после отпускания кнопки.

При экспериментах с D-триггером возможны сбои в работе схемы по рисунку 5, потому что контакты кнопки имеют неприятную способность дребезжать, и этот дребезг дает вместо одного нажатия на кнопку несколько нажатий подряд. Простейшим способом подавить этот дребезг можно если параллельно R1 включить электролитический конденсатор на 5-15 мкФ (типа К50-35), плюсом к кнопке, а минусом к минусу питания. Но в цифровой технике применяется другой способ — используется RS-триггер и переключающая кнопка. Схема такого бездребезгового формирователя импульсов показана на рисунке 7 (используется второй триггер микросхемы К561ТМ2 или К176ТМ2).

Выключатель управляемый одной кнопкой

Первая схема простого выключателя, управляемого одной кнопкой приведена на рисунке 1. Мощный полевой транзистор VТ1 выполняет функции электронного ключа, а управляет им D-триггер микросхемы К561ТМ2.

Данная схема, как и все последующие, потребляет минимальный ток, измеряемый единицами микроампер, и поэтому, практически не оказывает влияния на расход источника питания.

Рис. 1. Схема простого электронного выключателя, управляемого одной кнопкой.

Для того чтобы в момент подключения источника питания нагрузка не включилась сама здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние.

То есть, на его прямом выходе — единица. При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор остается закрытым, — питание на нагрузку не поступает.

При этом, на инверсном выходе триггера будет напряжение логического нуля. Оно через резистор R3, с небольшой задержкой, поступает на вход «D» триггера.

Теперь, при нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в логический нуль.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку поступает питание.

Теперь на инверсном выходе триггера -единица. Эта единица, с небольшой задержкой, через резистор R3 поступает на вход «D» триггера.

Теперь, при следующем нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в единицу. Единица на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ1 падает до величины, недостаточной для открывания полевого транзистора VТ1. Нагрузка выключается.

Электронный переключатель двух нагрузок

Но не всегда требуется именно выключатель, бывает что нужен переключатель. На рисунке 2 показана схема электронного переключателя двух нагрузок. Главное отличие от схемы на рис.1 в том, что здесь два мощных полевых транзистора.

Для того чтобы в момент подключения источника питания схема устанавливалась в одно известное положение, то есть, в данном случае, нагрузка 1 выключена, нагрузка 2 включена, здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние. То есть, на его прямом выходе — единица, на инверсном — ноль.

При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор остается закрытым, питание на нагрузку 1 не поступает. А напряжение между истоком и затвором транзистора VТ2 будет достаточным для его открывания, и транзистор откроется, поступит питание на нагрузку 2.

Рис. 2. Схема простого самодельного электронного переключателя двух нагрузок.

При этом, нуль с инверсного выхода триггера через резистор R3, с небольшой задержкой, поступает на вход «D» триггера. Теперь, при нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в логический нуль.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ 1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку 1 поступает питание.

Но транзистор VТ2 при этом закрывается, и нагрузка 2 выключается. Таким образом, при каждом нажатии кнопки S1 происходит переключение нагрузок.

Несколько слов, о назначении цепи C2-R3 в схемах на рис.1 и рис.2. Дело в том, что кнопка -это механические контакты, которые соединяются механически, и здесь практически не возможно обойтись без дребезга контактов. И чем больше износ кнопки, тем сильнее проявляется дребезг её контактов.

Поэтому, как при нажатии кнопки, так и при её отпускании, может формировать не один импульс, а целая серия коротких импульсов. И это может привести к многократному переключению триггера, и в результате, установке его в произвольное состояние. Чтобы такого не происходило здесь есть цепь C2-R3.

Она несколько задерживает приход логического уровня с инверсного выхода триггера на его вход «D». Поэтому, пока длится дребезг контактов, напряжение на входе «D» не меняется, и импульсы дребезга на состояние триггера не влияют.

Выключатель с двумя кнопками

Как уже отмечено выше, электронные выключатели бывают как с одной кнопкой, так и с двумя, — одна для включения, другая для выключения. На рисунке 3 показана схема именно выключателя.

Рис. 3. Схема электронного выключателя нагрузки с двумя кнопками.

Здесь точно так же, мощный полевой транзистор VТ1 выполняет функции электронного ключа, а управляет им триггер микросхемы К561ТМ2. Только работает он не как D-триггер, а как RS-триггер. Для этого его входы «С» и «D» соединены с общим минусом питания (то есть, на них всегда логические нули).

Для того чтобы в момент подключения источника питания нагрузка не включилась сама здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние.

То есть, на его прямом выходе — единица. При этом, напряжение между истоком и затвором транзистора VT1 будет слишком мало для его открывания, и транзистор остается закрытым, — питание на нагрузку не поступает.

Для включения нагрузки служит кнопка S1. При её нажатии триггер переключается в положение «R», то есть, на его прямом выходе устанавливается логический ноль.

Логический нуль на затворе VT1 приводит к тому, что напряжение между истоком и затвором VT1 возрастает до величины, достаточной для открывания полевого транзистора VT1.

На нагрузку поступает питание. Для того, чтобы выключить нагрузку нужно нажать кнопку S2. При её нажатии триггер переключается в положение «S», то есть, на его прямом выходе устанавливается логическая единица.

Единица на затворе VT1 приводит к тому, что напряжение между истоком и затвором VT1 падает до величины, недостаточной для открывания полевого транзистора VT1. Нагрузка выключается.

Две кнопки и две нагрузки

Электронный переключатель с двумя кнопками работает логичнее однокнопочного, во всяком случае понятно, что одна кнопка включается одну нагрузку, а другая — другую нагрузку. На рисунке 4 показана схема двухкнопочного электронного переключателя двух нагрузок.

Рис. 4. Схема электронного переключателя с двумя кнопками для двух нагрузок.

Для того чтобы в момент подключения источника питания схема устанавливалась в одно известное положение, то есть, в данном случае, нагрузка 1 выключена, нагрузка 2 включена, здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние. То есть, на его прямом выходе — единица, на инверсном — ноль.

При этом, напряжение между истоком и затвором транзистора VT1 будет слишком мало для его открывания, и транзистор остается закрытым, — питание на нагрузку 1 не поступает.

А напряжение между истоком и затвором транзистора VT2 будет достаточным для его открывания, и транзистор откроется, поступит питание на нагрузку 2. Для включения нагрузки 1 служит кнопка 51. При её нажатии триггер переключается в положение «R», то есть, на его прямом выходе устанавливается логический ноль.

Логический нуль на затворе VT1 приводит к тому, что напряжение между истоком и затвором VT1 возрастает до величины, достаточной для открывания полевого транзистора VT1. На нагрузку поступает питание.

При этом, на инверсном выходе триггера присутствует логическая единица. Напряжение между истоком и затвором транзистора VT2 будет слишком мало для его открывания, и транзистор остается закрытым, — питание на нагрузку 2 не поступает.

Для включения нагрузки 2 служит кнопка 52. При её нажатии триггер переключается в положение «S», то есть, на его инверсном выходе устанавливается логический ноль. Логический нуль на затворе VT2 приводит к тому, что напряжение между истоком и затвором VT2 возрастает до величины, достаточной для открывания полевого транзистора VT2.

На нагрузку 2 поступает питание. При этом, на прямом выходе триггера присутствует логическая единица. Напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор остается закрытым, — питание на нагрузку 1 не поступает.

Электронное реле времени

Но понадобиться могут не только выключатели и переключатели, но реле времени. На рисунке 5 показана схема электронного реле времени, которое включает нагрузку при нажатии кнопки S1, а выключает её примерно через 30 секунд.

Рис. 5. Схема электронного реле времени для включения нагрузки при нажатии кнопки и выключения через 30 секунд.

Реле времени запускается кнопкой S1. При её нажатии триггер переключается в положение «R», то есть, на его прямом выходе устанавливается логический ноль.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ 1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку поступает питание.

В то же время, логическая единица с инверсного выхода начинает через резистор R2 медленно заряжать конденсатор С1. Время включенного состояния нагрузки истекает тогда, когда конденсатор С1 зарядится до напряжения, которое будет понято микросхемой как логическая единица. Тогда триггер установится в состояние «S».

То есть, на его прямом выходе — единица. При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор закроется, -питание на нагрузку выключится. Время включенного состояния нагрузки зависит от цепи C1-R2.

Реле времени на 8 часов

Изменением составляющих этой цепи можно изменять это время в широких пределах, но очень большого времени выдержки достигнуть сложно. На рисунке 6 показана схема реле времени на цифровой микросхеме, время включенного состояния нагрузки в котором составляет около 8 часов.

Рис. 6. ЁПринципиальная схема реле времени на цифровой микросхеме, которое включает нагрузку на 8 часов.

Реле времени запускается кнопкой S1. При её нажатии счетчик микросхемы D1 переключается в нулевое состояние, то есть, на всех его выходах устанавливается логический ноль, в том числе и на самом старшем выходе D14. Откуда он поступает на затвор VТ1.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку поступает питание.

Далее, счетчик начинает отсчитывать время, считая импульсы, которые вырабатывает его встроенный мультивибратор. Спустя заданное время на выводе 3 устанавливается логическая единица. При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор закроется, — питание на нагрузку выключится.

В то же время, логическая единица через диод VD3 поступает на вывод 11 D1 и блокирует внутренний мультивибратор микросхемы. Генерация импульсов прекращается. Во всех схемах для подачи питания на нагрузку используются транзисторы IRFR5505. Это ключевой полевой транзистор с допустимым током коллектора 18А и сопротивлением в открытом состоянии 0,1 От.

Открывается транзистор при напряжении на затворе не ниже 4,25V. Поэтому и минимальное напряжение питания в схемах указано 5V, так сказать, чтобы точно хватило. Но, при напряжении питания схемы до 7V и при большом токе нагрузки транзистор все же открывается не полностью.

И сопротивление его канала существенно больше 0,1 Ом, поэтому, при питании ниже 7V ток нагрузки не должен превышать 5А. При питании же более высоким напряжением, ток может быть до 18А. Так же нужно учесть, что при токе нагрузки более 4А транзистору нужен будет радиатор для отвода тепла. Одно из свойств таких транзисторов, -это относительно большая емкость затвора.

И именно этого боятся микросхемы КМОП — относительно большой емкости на выходе. Потому что, хотя статическое сопротивление затвора и стремится к бесконечности, но при изменении напряжения на затворе возникает существенный бросок тока на заряд / разряд его емкости.

В очень редких случаях это повреждает микросхему, гораздо чаще это приводит к сбоям в работе микросхемы, особенно триггеров и счетчиков. Чтобы этих сбоев не происходило между выходами микросхем и затворами транзисторов в этих схемах включены токоограничивающие резисторы, например, R4 в схеме на рис.1. Плюс два диода, ускоряющих заряд / разряд емкости затвора.

Литовкин С. Н. РК-08-17.

Литература: И. Нечаев. — Электронный выключатель. Р-02-2004.

Практически каждый радиолюбитель хоть раз да применял переключатели П2К, которые могут быть одиночными (с фиксацией или без), или собираться в группы (без фиксации, независимая фиксация, зависимая фиксация). В ряде случаев такие переключатели целесообразнее заменить на электронные, собранные на ТТЛ микросхемах. Именно о таких переключателях мы и поговорим.

Переключатель с фиксацией. Эквивалентом в цифровой схемотехнике такому переключателю служит триггер со счетным входом. При первом нажатии на кнопку триггер переходит в одно устойчивое состояние, при повторном – в противоположное. Но управлять счетным входом триггера кнопкой напрямую невозможно из-за дребезга ее контактов в момент замыкания и размыкания. Одним из самых распространенных методов борьбы с дребезгом является использование кнопки на переключение совместно со статическим триггером. Взглянем на рис.1.

Рис.1

В исходном состоянии на выходах элементов DD1.1 и DD1.2 «1» и «0» соответственно. При нажатии на кнопку SB1 первое же замыкание ее нормально разомкнутых контактов переключает триггер, собранный на DD1.1 и DD1.2 , причем дребезг контактов на дальнейшую его судьбу не влияет – чтобы триггер вернулся в исходное состояние, необходимо подать логический ноль на нижний его элемент. Это может произойти только при отпускании кнопки и снова дребезг не повлияет на надежность переключения. Далее наш статический триггер управляет обычным счетным, который переключается по входу С фронтом сигнала с выхода DD1.2.

Следующая схема (рис.2) работает аналогично, но позволяет сэкономить один корпус, поскольку в качестве статического триггера используется вторая половина микросхемы DD1.

Рис.2

Если применение кнопок с переключающими контактами неудобно, то можно воспользоваться схемой, изображенной на рис.3.

Рис.3

В ней в качестве подавителя дребезга используется цепочка R1,С1,R2. В исходном состоянии конденсатор подключен к цепи +5 В и разряжен. При нажатии на кнопку SB1 начинается заряд конденсатора. Как только он зарядится, на входе счетного триггера сформируется отрицательный импульс, который его и переключит. Поскольку время зарядки конденсатора много больше времени переходных процессов в кнопке и составляет порядка 300 нс, дребезг контактов кнопки не влияет на состояние триггера

Переключатели с фиксацией и общим сбросом. Схема, изображенная на рис.4 представляет собой произвольное количество кнопок с независимой фиксацией и одной кнопкой общего сброса.

Рис.4

Каждый переключатель представляет собой статический триггер, включаемый отдельной кнопкой. Поскольку при появлении даже короткого низкого уровня триггер однозначно переключается и удерживается в таком положении до сигнала «сброс» на другом входе, схема подавления дребезга контактов кнопки не нужна. Сбрасывающие входы всех триггеров соединены и подключены к кнопке SBL, являющейся общей кнопкой сброса. Таким образом включить каждый триггер можно отдельной кнопкой, выключить же можно только все сразу кнопкой «Сброс».

Переключатели с зависимой фиксацией. В этой схеме каждая кнопка включает свой статический триггер и одновременно сбрасывает все остальные. Таким образом мы получаем аналог линейки кнопок П2К с зависимой фиксацией (рис.5).

Рис.5

Как и в предыдущей схеме, каждая кнопка включает свой триггер, но одновременно с этим запускает схему сброса, собранную на транзисторе VT2 и элементах DК.3, DK.4. Рассмотрим работу этого узла. Предположим, нам нужно включить первый триггер (элементы D1.1, D1.2). При нажатии на кнопку SB1 низкий уровень (поскольку конденсатор C1 разряжен) переключит триггер (вход элемента D1.1). Конденсатор тут же начнет заряжаться через цепь SB1, R8. Как только напряжение на нем увеличится примерно до 0.7В, откроется транзистор VT1, но для элемента D1.1 такое напряжение еще является логическим «0».

Транзистор тут же переключит триггер Шмидта на элементах DK.3, DK.4, который сформирует короткий импульс на входах сброса всех триггеров. Все триггеры будут сброшены (если до этого были включены), кроме первого, поскольку через кнопку SB1 на его верхний по схеме вход все еще подается логический «0» (напряжение ниже 1 В). Таким образом, задержка прохождения сигнала сброса достаточна для прекращения дребезга контактов, но сброс произойдет быстрее, чем мы отпустим кнопку, запрещающую переключение соответствующего триггера

Интересную и несложную схему переключателя с зависимой фиксацией можно построить на микросхеме К155ТМ8 (рис.6).

Рис.6

При подаче питания цепочка R6, С1 сбрасывает все триггеры и на их прямых выходах устанавливается низкий логический уровень. На входах D так же уровень низкий, поскольку все они замкнуты каждый через свою кнопку на общий провод. Предположим нажата кнопка SB1. На входе первого триггера устанавливается «1» (благодаря R1), на общем тактирующем входе – «0» (через переключающий контакт кнопки). Пока теоретически ничего не происходит, поскольку микросхема стробирует данные по положительному перепаду. А вот при отпускании кнопки данные со входов будут переписаны в триггеры – в 2, 3, 4 – «0», в 1 – «1», поскольку положительный фронт на входе С появится раньше, чем верхние по схеме контакты SB1 замкнутся. При нажатии любой другой кнопки цикл повторится, но «1» будет записана в тот триггер, чья кнопка будет нажата. Это в теории. Практически из-за дребезга контактов данные с входа перепишутся сразу после нажатия кнопки и по отпусканию ее не изменятся.

Все вышеперечисленные схемы с зависимой фиксацией обладают одним существенным недостатком, который свойственен и переключателям П2К – возможность «защелкивания» нескольких кнопок при их одновременном нажатии. Избежать этого позволит схема, собранная на приоритетном шифраторе (рис.7).

Рис.7

Схема, конечно, с виду достаточно громоздка, но фактически состоит лишь из трех корпусов без дополнительных навесных элементов и, что немаловажно, не требует кнопок на переключение. При нажатии на кнопку, приоритетный шифратор DD1 устанавливает на своем выходе двоичный код (инверсный) этой кнопки и подтверждает его сигналом G «строб», который тут же записывает данные в микросхему DD2, работающую в режиме четырехразрядного параллельного регистра-защелки. Здесь код еще раз инвертируется (выходы у регистра инверсные) и поступает на обычный двоично-десятичный дешифратор DD3. Таким образом, на соответствующем выходе дешифратора устанавливается низкий уровень, который будет неизменным до нажатия любой другой кнопки. Невозможность одновременного защелкивания двух кнопок обеспечивает схема приоритета (подробнее о работе приоритетного шифратора я писал ). Поскольку микросхема К155ИВ1 прямо таки создана для наращивания разрядности, было бы глупо не воспользоваться этим и не собрать блок переключателей с зависимой фиксацией на 16 кнопок (рис.8).

Рис.8

Останавливаться на работе схемы я не буду, поскольку принцип наращивания разрядности ИВ1 я подробно описал . Разводку выводов питания ТТЛ микросхем серии К155 (1533, 555, 133) можно посмотерть .

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *