Опубликовано

Самодельные ветрогенераторы из асинхронного двигателя до 10квт

Генератор из асинхронного электродвигателя своими руками

Для обеспечения бесперебойного электроснабжения дома используют генераторы переменного тока, приводимые во вращение дизельными или карбюраторными двигателями внутреннего сгорания. Но из курса электротехники известно, что любой электродвигатель обратим: он также способен и вырабатывать электроэнергию. Можно ли сделать генератор из асинхронного двигателя своими руками, если он и двигатель внутреннего сгорания уже имеются? Ведь тогда не потребуется покупка дорогой электростанции, а можно будет обойтись подручными средствами.

Конструкция асинхронного электродвигателя

Асинхронный электродвигатель включает в себя две основные детали: неподвижный статор и вращающегося внутри него ротор. Ротор вращается на подшипниках, закрепленных в съемных торцевых частях. Ротор и статор содержат электрические обмотки, витки которых уложены в пазы.

Статорная обмотка подключается к сети переменного тока, однофазной или трехфазной. Металлическая часть статора, куда она уложена, называется магнитопроводом. Он выполнен из отдельных тонких пластин с покрытием, изолирующих их друг от друга. Этим исключается появление вихревых токов, делающих работу электродвигателя невозможной из-за возникновения чрезмерных потерь на нагрев магнитопровода.

Выводы от обмоток всех трех фаз располагаются в специальном боксе на корпусе электродвигателя. Его называют барно, в нем выводы обмоток соединяются между собой. В зависимости от питающего напряжения и технических данных мотора выводы объединяются либо в звезду, либо в треугольник.

Обмотка ротора любого асинхронного электродвигателя похожа на «беличью клетку», так ее и называют. Она выполнена в виде ряда токопроводящих алюминиевых стержней, рассредоточенных по наружной поверхности ротора. Концы стержней замкнуты, поэтому такой ротор называют короткозамкнутым.

Обмотка, как и статорная, расположена внутри магнитопровода, также набранного из изолированных металлических пластин.

Принцип действия асинхронного электродвигателя

При подключении питающего напряжения к статору по виткам обмотки протекает ток. Он создает внутри магнитное поле. Поскольку ток переменный, то поле изменяется в соответствии с формой питающего напряжения. Расположение обмоток в пространстве выполнено так, что поле внутри него оказывается вращающимся.

В обмотке ротора вращающееся поле наводит ЭДС. А раз витки обмотки накоротко замкнуты, то в них появляется ток. Он взаимодействует с полем статора, это приводит к появлению вращения вала электродвигателя.

Электродвигатель называют асинхронным, потому что поле статора и ротор вертятся с разными скоростями. Эта разница скоростей называется скольжением (S).

n – частота магнитного поля;

nr – частота вращения ротора.

Чтобы регулировать скорость вала в широких пределах, асинхронные электродвигатели выполняют с фазным ротором. На таком роторе намотаны смещенные в пространстве обмотки, такие же, как и на статоре. Концы от них выведены на кольца, с помощью щеточного аппарата к ним подключаются резисторы. Чем большее сопротивление подключить к фазному ротору, тем меньше будет скорость его вращения.

Асинхронный генератор

А что будет, если ротор асинхронного электродвигателя вращать? Сможет ли он вырабатывать электроэнергию, и как сделать генератор из асинхронного двигателя?

Оказывается, это возможно. Для того, чтобы на обмотке статора появилось напряжение, изначально необходимо создать вращающееся магнитное поле. Оно появляется за счет остаточной намагниченности ротора электрической машины. В дальнейшем, при появлении тока нагрузки, сила магнитного поля ротора достигает требуемой величины и стабилизируется.

Для облегчения процесса появления напряжения на выходе используется батарея конденсаторов, подключаемая к статору асинхронного генератора на момент запуска (конденсаторное возбуждение).

Но остается неизменным параметр, свойственный асинхронному электродвигателю: величина скольжения. Из-за него частота выходного напряжения асинхронного генератора будет меньшей, чем частота вращения вала.

Кстати, вал асинхронного генератора необходимо вращать с такой скоростью, чтобы была достигнута номинальная частота вращения поля статора электродвигателя. Для этого нужно узнать скорость вращения вала из таблички, расположенной на корпусе. Округлив ее значение до ближайшего целого числа, получают скорость вращения для ротора переделываемого в генератор электродвигателя.

Например, для электродвигателя, табличка которого изображена на фото, скорость вращения вала равна 950 оборотов в минуту. Значит, скорость вращения вала должна быть 1000 оборотов в минуту.

Чем асинхронный генератор хуже синхронного?

Насколько хорош будет самодельный генератор из асинхронного двигателя? Чем он будет отличаться от синхронного генератора?

Для ответа на эти вопросы кратко напомним принцип работы синхронного генератора. Через контактные кольца к обмотке ротора подводится постоянный ток, величина которого регулируется. Вращающееся поле ротора создает в обмотке статора ЭДС. Для получения требуемой величины напряжения генерации автоматическая система регулировки возбуждения изменит ток в роторе. Поскольку за напряжением на выходе генератора следит автоматика, то в результате непрерывного процесса регулирования напряжение всегда остается неизменным и не зависит от величины тока нагрузки.

Для запуска и работы синхронных генераторов используются независимые источники питания (аккумуляторные батареи). Поэтому начало его работы не зависит ни от появления тока нагрузки на выходе, ни от достижения требуемой скорости вращения. От скорости вращения зависит только частота выходного напряжения.

Но даже при получении тока возбуждения от генераторного напряжения все сказанное выше остается справедливым.

Синхронный генератор имеет еще одну особенность: он способен генерировать не только активную, но и реактивную мощность. Это очень важно при питании потребляющих ее электродвигателей, трансформаторов и прочих агрегатов. Недостаток реактивной мощности в сети приводит к росту потерь на нагрев проводников, обмоток электрических машин, снижении величины напряжения у потребителей относительно генерируемой величины.

Для возбуждения же асинхронного генератора используется остаточная намагниченность его ротора, что само по себе является величиной случайной. Регулирование параметров, влияющих на величину его выходного напряжения, в процессе работы не представляется возможным.

К тому же асинхронный генератор не вырабатывает, а потребляет реактивную мощность. Она необходима ему для создания тока возбуждения в роторе. Вспомним про конденсаторное возбуждение: за счет подключения батареи конденсаторов при запуске создается реактивная мощность, требуемая генератору для начала работы.

В результате напряжение на выходе асинхронного генератора не стабильно и изменяется в зависимости от характера нагрузки. При подключении к нему большого числа потребителей реактивной мощности обмотка статора может перегреваться, что скажется на сроке службы ее изоляции.

Поэтому применение асинхронного генератора ограничено. Он может работать в условиях, близким к «парниковым»: никаких перегрузок, пусковых токов нагрузки, мощных потребителей реактива. И при этом электроприемники, подключенные к нему, не должны быть критичными к изменению величины и частоты напряжения питания.

Идеальным местом для применения асинхронного генератора являются системы альтернативной энергетики, работающие от энергии воды или ветра. В этих устройствах генератор не снабжает потребителя напрямую, а заряжает аккумуляторную батарею. От нее уже, через преобразователь постоянного тока в переменный, питается нагрузка.

Поэтому, если нужно собрать ветряк или небольшую гидроэлектростанцию, лучшим выходом из положения является именно асинхронный генератор. Здесь работает его главное и единственное достоинство – простота конструкции. Отсутствие колец на роторе и щеточного аппарата приводит к тому, что в процессе эксплуатации его не нужно постоянно обслуживать: чистить кольца, менять щетки, удалять графитовую пыль от них. Ведь, чтобы сделать ветрогенератор из асинхронного двигателя своими руками, вал генератора напрямую нужно соединить с лопастями ветряка. Значит – конструкция будет находиться на большой высоте. Снимать ее оттуда хлопотно.

Генератор на магнитах

А почему магнитное поле нужно обязательно создавать с помощью электрического тока? Ведь есть же мощные его источники – неодимовые магниты.

Для переделки асинхронного двигателя в генератор потребуются цилиндрические неодимовые магниты, которые будут установлены на место штатных проводников обмотки ротора. Сначала нужно подсчитать необходимое количество магнитов. Для этого извлекают ротор из переделываемого в генератор двигателя. На нем четко видны места, в которых уложена обмотка «беличьего колеса». Размеры (диаметр) магнитов выбирается таким, чтобы при установке строго по центру проводников короткозамкнутой обмотки они не соприкасались с магнитами следующего ряда. Между рядами должен остаться зазор не менее, чем диаметр применяемого магнита.

Определившись с диаметром, вычисляют, сколько магнитов поместится по длине проводника обмотки от одного края ротора до другого. Между ними при этом оставляют зазор не менее одного – двух миллиметров. Умножая количество магнитов в ряду, на число рядов (проводников обмотки ротора), получают требуемое их количество. Высоту магнитов не стоит выбирать очень большой.

Для установки магнитов на ротор асинхронного электродвигателя его потребуется доработать: снять на токарном станке слой металла на глубину, соответствующую высоте магнита. При этом ротор обязательно нужно тщательно отцентровать в станке, чтобы не сбить его балансировку. Иначе у него появится смещение центра масс, которое приведет к биению в работе.

Затем приступают к установке магнитов на поверхность ротора. Для фиксации используют клей. У любого магнита есть два полюса, условно называемые северным и южным. В пределах одного ряда полюса, расположенные в сторону от ротора, должны быть одинаковыми. Чтобы не ошибиться в установке, магниты сначала сцепляют между собой в гирлянду. Они сцепятся строго определенным образом, так как притягиваются они друг к другу только разноименными полюсами. Теперь остается только отметить одноименные полюса маркером.

В каждом последующем ряду полюс, находящийся снаружи, изменяется. То есть, если вы выложили ряд магнитов с отмеченным маркером полюсом, расположенным наружу от ротора, то следующий выкладывается магнитами, развернутыми наоборот. И так далее.

После приклеивания магнитов их нужно зафиксировать эпоксидной смолой, Для этого вокруг получившийся конструкции из картона или плотной бумаги делают шаблон, в который зальется смола. Бумагу оборачивают вокруг ротора, обматывают скотчем или изолентой. Одну из торцевых частей замазывают пластилином или также заклеивают. Затем устанавливают ротор вертикально и заливают в полость между бумагой и металлом эпоксидную смолу. После ее отвердевания приспособления удаляют.

Теперь снова зажимаем ротор в токарный станок, центруем, и шлифуем поверхность, залитую эпоксидкой. Это необходимо не из эстетических соображений, а для минимизации влияния возможной разбалансировки, образовавшейся из-за дополнительных деталей, установленных на ротор.

Шлифовку производят сначала крупнозернистой наждачной бумагой. Ее крепят на деревянном бруске, который затем равномерно перемещают по вращающейся поверхности. Затем можно применить наждачную бумагу с более мелким зерном.

Теперь готовый ротор можно вставить обратно в статор и испытать получившуюся конструкцию. Она может быть с успехом использована теми, кто хочет сделать, например, ветрогенератор из асинхронного двигателя. Есть только один недостаток: стоимость неодимовых магнитов очень велика. Поэтому, прежде чем начать переделывать ротор и тратить деньги на запчасти, следует подсчитать, какой вариант экономически более выгоден: сделать генератор из асинхронного двигателя или приобрести готовый.

Генератор из асинхронного двигателя своими руками в домашних условиях
Как сделать генератор из асинхронного двигателя своими руками для использования совместно с двигателем внутреннего сгорания или в составе ветровой электростанции. Достоинства и недостатки асинхронных генераторов по сравнению с синхронными, конструкция их и принципы действия.

Ветрогенератор из тракторного генератора Г-700

Этот ветрогенератор сделан на основе генератора Г-700 от трактора. Винт генератора имеет двухлопастную конструкцию, что в комплекте позволяет развивать высокие обороты даже прим алых ветрах. Средняя мощность которую выдает генератор составляет 150 ватт, она достигается уже при ветре в 6 м\с. В статье рассмотрены основные моменты модернизации и конструктивных особенностей ветрогенератора данной модели.
Материалы и детали необходимые для постройки ветряка данного типа:
1) тракторный генератор Г-700
2) провод 0.8 мм толщиной около 200 метров.
3) профильная труба
4) дюралюминиевая труба 110 мм
5) болты м10
Рассмотрим более подробно конструкцию ветряка и его основных составляющих.
Основной частью ветряка является генератор, который в данном случае был переделан из стандартного тракторного генератора Г-700. Тракторный генератор Г-700 обладает следующими характеристиками: номинальное напряжение равно 14 В, номинальный ток 50 А, генератор весит 5.4 кг без шкива, а так же имеет ресурс в 10000 часов.
Единственной загвоздкой для использования этого генератора без переделок стали слишком высокие рабочие обороты от 5000 до 6000 оборотов. Поэтому для начала автор занялся модернизацией генератора.
Был полностью перемотан статор генератора при помощи провода толщиной в 0.8 мм по 80 витков. Это было сделано для того, чтобы поднят напряжение на оборотах. Так подверглась переработке и катушка возбуждения электромагнитов. На катушку тем же проводом, что использовался для статора, было намотано 250 витков. С учетом полной перемотки статора и домотки катушки автор затратил около 200 метров провода на подобную модернизацию.
Затем автор приступил к созданию крепления для этого генератора. Конструкция крепления была сделана из профильной трубы таким образом, чтобы привод проходил внутри и свивал вертикально. Так же конструкцией ветряка была предусмотрена защита от сильного ветра. Для того, чтобы снизить нагрузки организована защита при помощи «складывания хвоста», для этого был приварен шкворень, на который в последующем будет одет хвост ветрогенератора.
Так как генератору все же требуются достаточно высокие обороты для качественной работы конструкция винта была выбрана двухлопастной. Сам винт получился диаметром около 136 см, а материалом для его создания стала дюралюминиевая труба диаметром в 110 мм. Из этой трубы и были вырезаны обе лопасти винта. Длинна каждой лопасти получилась 63 см. Для того, чтобы уменьшить закрутку и сделать лопасти более плоскими автор раскатал их. В итоге получилось как будто лопасти были сделаны из трубы диаметром 400 мм.
Фотографии готового ветряка:
Благодаря тому, что у использованного генератора нет залипаний, винт стартует даже от самого легкого ветра и развивает высокие обороты. Длинна мачты ветрогенератора составляет 5 метров. Высоту добавляет так же труба самого генератора.
Крепление происходит в трех местах через болты м10. Для удержания мачты ветрогенератора в вертикальном положении она была закреплена при помощи растяжек. провод от ветрогенератора идет внутри трубы, таким образом он надежно защищен от внешних условий. В конструкции автор не использовал токосъемные кольца.
Зарядка аккумулятора начинается уже при ветре в 3.5 м\с, а при скорости в 4 м\с винт ветрогенератора разгоняется до 300 об\м, при 7 м\с обороты достигают отметки в 800-900, когда ветер 15 м\с то винт выходит на обороты в 1500 об\м.
Максимальная мощность генератора, которая была зафиксирована автором составляла 250 ватт. При стандартном ветре в 6 м\с ветрогенератор каждый час выдает 150 ватт энергии. Этой мощности вполне хватает для зарядки автомобильного аккумулятора. Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .

Ветрогенератор

Работа ветрогенератора Промышленные ветрогенераторы в Северном море Ветер раскручивает ротор. Выработанное электричество подаётся через контроллер на аккумуляторы. Инвертор преобразует напряжение на контактах аккумулятора в пригодное для использования

Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) — устройство для преобразования кинетической энергии ветрового потока в механическую энергию вращения ротора с последующим её преобразованием в электрическую энергию.

Ветрогенераторы можно разделить на три категории: промышленные, коммерческие и бытовые (для частного использования).

Промышленные устанавливаются государством или крупными энергетическими корпорациями. Как правило, их объединяют в сети, в результате получается ветровая электростанция. Её основное отличие от традиционных (тепловых, атомных) — полное отсутствие, как сырья, так и отходов. Единственное важное требование для ВЭС — высокий среднегодовой уровень ветра. Мощность современных ветрогенераторов достигает 8 МВт.

Мощность ветрогенератора зависит от мощности воздушного потока ( N {\displaystyle N} ), определяемой скоростью ветра и ометаемой площадью N = p S V 3 / 2 {\displaystyle N=pSV^{3}/2} ,

где: V {\displaystyle V} — скорость ветра, p {\displaystyle p} — плотность воздуха, S {\displaystyle S} — ометаемая площадь.

Типы ветрогенераторов

Существуют классификации ветрогенераторов по количеству лопастей, по материалам, из которых они выполнены, по оси вращения и по шагу винта.

Существуют два основных типа ветротурбин:

  • с вертикальной осью вращения («карусельные» — роторные (в том числе «ротор Савониуса»), «лопастные» ортогональные — ротор Дарье);
  • с горизонтальной осью круглого вращения (крыльчатые). Они бывают быстроходными с малым числом лопастей и тихоходными многолопастными, с КПД до 40%.

Также существуют барабанные и роторные ветротурбины.

Ветрогенераторы, как правило, используют три лопасти для достижения компромисса между величиной крутящего момента (возрастает с ростом числа лопастей) и скоростью вращения (понижается с ростом числа лопастей).

Преимущества и недостатки разных типов ВЭУ

Теоретически доказано, что коэффициент использования энергии ветра идеального ветроколеса (КИЭВ) горизонтальных, пропеллерных и вертикально-осевых установок равен, 0.593. Это объясняется тем, что роторы ВЭУ обоих типов используют один и тот же эффект подъемной силы, возникающий при обтекании ветровым потоком профилированной лопасти, К настоящему времени достигнутый на горизонтальных пропеллерных ВЭУ коэффициент использования энергии ветра составляет 0.4. На данный момент этот коэффициент у ветрогенераторов (ветроустановок) ГРЦ-Вертикаль составляет 0.38. Проведенные экспериментальные исследования российских вертикально-осевых установок показали, что достижение значения 0.4-0.45 — вполне реальная задача. Таким образом, можно отметить, что коэффициенты использования энергии ветра горизонтально-осевых пропеллерных и вертикально-осевых ВЭУ близки.

Проблемы эксплуатации промышленных ветрогенераторов

Внутри башни 11 × E-126 бельгийской ВЭС Estinnes в июле 2010, за месяц до завершения строительства станции 11 × E-126 (11 × 7,5 МВт) бельгийской ВЭС Estinnes 10 октября 2010 года.

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 3 апреля 2016 года.

Промышленный ветрогенератор строится на подготовленной площадке за 7-10 дней. Получение разрешений регулирующих органов на строительство ветровой фермы может занимать год и более. Кроме того, для обоснования строительства ветроустановки или ветропарка необходимо проведение длительных (не менее года) исследований ветра в районе строительства. Эти мероприятия значительно увеличивают срок реализации ветроэнергетических проектов.

Для строительства необходимы дорога до строительной площадки, место для размещения узлов при монтаже, тяжёлая подъёмная техника с выносом стрелы более 50 метров, так как гондолы устанавливаются на высоте около 50 метров.

В ходе эксплуатации промышленных ветрогенераторов возникают различные проблемы:

  • Неправильное устройство фундамента. Если фундамент башни неправильно рассчитан, или неправильно устроен дренаж фундамента, башня от сильного порыва ветра может упасть.
  • Обледенение лопастей и других частей генератора. Обледенение способно увеличить массу лопастей и снизить эффективность работы ветрогенератора. Для эксплуатации в арктических областях части ветрогенератора должны быть изготовлены из специальных морозостойких материалов. Жидкости, используемые в генераторе, не должны замерзать. Может замёрзнуть оборудование, замеряющее скорость ветра. В этом случае эффективность ветрогенератора может серьёзно снизиться. Из-за обледенения приборы могут показывать низкую скорость ветра, и ротор останется неподвижным.
  • Отключение/поломка тормозной системы. При этом лопасть набирает слишком большую скорость и, как следствие, ломается.
  • Отключение. При резких колебаниях скорости ветра срабатывает электрическая защита аппаратов, входящих в состав системы, что снижает эффективность системы в целом. Так же для больших ветростанций большая вероятность срабатывания защиты на отходящих ЛЭП.
  • Нестабильность работы генератора. Из-за того, что в большинстве промышленных ветрогенерирующих установках стоят асинхронные генераторы, стабильная работа их зависит от постоянства напряжения в ЛЭП.
  • Пожары. Пожар может возникнуть из-за трения вращающихся частей внутри гондолы, утечки масла из гидравлических систем, обрыва кабелей и т. д. Пожары ветрогенераторов редки, но их трудно тушить из-за отдалённости ветровых электростанций и большой высоты, на которой происходит пожар. На современных ветрогенераторах устанавливаются системы пожаротушения.
  • Удары молний. Удары молний могут привести к пожару. На современных ветрогенераторах устанавливаются молниеотводящие системы.
  • Шум и вибрация.

Перспективные разработки

Норвежская компания StatoilHydro и немецкий концерн Siemens AG разработали плавающие ветрогенераторы для морских станций большой глубины. StatoilHydro построила демонстрационную версию мощностью 2,3 МВт в июне 2009 года. Турбина под названием Hywind, разработанная Siemens Renewable Energy, весит 5 300 тонн при высоте 65 метров. Располагается она в 10 километрах от острова Кармой, неподалеку от юго-западного берега Норвегии. Компания планирует в будущем довести мощность турбины до 5 МВт, а диаметр ротора — до 120 метров. Аналогичные разработки ведутся в США.

Компания Magenn разработала специальный аппарат с установленным на нём ветрогенератором, который сам поднимается на высоту 120—300 метров. Нет необходимости строить башню и занимать землю. Аппарат работает в диапазоне скоростей ветра от 1 м/с до 28 м/с. Аппарат может перемещаться в ветряные регионы или быстро устанавливаться в местах катастроф.

Компания Windrotor предлагает конструкцию ротора мощной турбины, позволяющую значительно увеличить его размеры и коэффициент использования энергии ветра. Предполагается, что эта конструкция станет новым поколением роторов ветровых турбин.

В мае 2009 года в Германии компанией Advanced Tower Systems (ATS) был запущен в эксплуатацию первый ветрогенератор, установленный на гибридной башне. Нижняя часть башни высотой 76,5 метров построена из железобетона. Верхняя часть высотой 55 метров построена из стали. Общая высота ветрогенератора (вместе с лопастями) составляет 180 метров. Увеличение высоты башни позволит увеличить выработку электроэнерии до 20 %.

В конце 2010 года испанские компании Gamesa, Iberdrola, Acciona Alstom Wind, Técnicas Reunidas, Ingeteam, Ingeciber, Imatia, Tecnitest Ingenieros и DIgSILENT Ibérica создали группу для совместной разработки ветрогенератора мощностью 15,0 МВт.

Евросоюз создал исследовательский проект UpWind для разработки офшорного ветрогенератора мощностью 20 МВт.

В 2013 году японская компания Mitsui Ocean Development & Engineering Company разработала гибридную установку: на единой плавающей в воде оси установлена ветровая турбина и турбина, работающая от приливной энергии.

Малые ветрогенераторы

Три типа ветрогенераторов в действии Малый роторный ветрогенератор на крыше здания Парусный ветрогенератор

К малой ветроэнергетике относятся установки мощностью менее 100 кВт. Установки мощностью менее 1 кВт относятся к микро-ветровой энергетике. Они применяются на яхтах, сельскохозяйственных фермах для водоснабжения и т. д.

Строение малой ветровой установки

  1. Ротор; лопасти; ветротурбина; хвост, ориентирующий ротор против ветра
  2. Генератор
  3. Мачта с растяжками
  4. Контроллер заряда аккумуляторов
  5. Аккумуляторы (обычно необслуживаемые на 24 В)
  6. Инвертор (= 24 В -> ~ 220 В 50Гц), подключенный к электросети

Малые ветрогенераторы могут работать автономно, то есть без подключения к общей электрической сети.

Некоторые современные бытовые ИБП имеют модуль подключения источника постоянного тока специально для работы с солнечными батареями или ветрогенераторами. Таким образом, ветрогенератор может быть частью домашней системы электропитания, снижая потребление энергии от электросети.

Плюсы и минусы эксплуатации

В настоящее время, несмотря на рост цен на энергоносители, себестоимость электроэнергии не составляет сколько-нибудь значительную величину у основной массы производств на фоне других затрат. Ключевым для потребителя остаётся надёжность и стабильность электроснабжения.

Основными факторами, приводящими к удорожанию энергии для использования в промышленности, получаемой от ветрогенераторов, являются:

  • необходимость получения электроэнергии промышленного качества ~ 220 В 50 Гц (применяется инвертор, ранее для этой цели применялся умформер)
  • необходимость автономной работы в течение некоторого времени (применяются аккумуляторы);
  • необходимость длительной бесперебойной работы потребителей (применяется дизель-генератор);

Считается, что применение малых автономных ветрогенераторов в быту малоцелесообразно из-за:

  • высокой стоимости аккумуляторных батарей: ~ 25 % стоимости установки (используется в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети);
  • достаточно высокой стоимости инвертора (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в переменное напряжение стандарта бытовой электросети (220 В, 50 Гц).
  • нередкой необходимости добавлять к нему дизель-генератор, сравнимый по стоимости со всей установкой.

Однако, при наличии общей электросети и современного ИБП с двойным преобразованием эти факторы становятся неактуальными, также часто такие ИБП предусматривают возможность дополнения различными нестабильными источниками постоянного тока, такими как ветрогенератор или солнечная батарея.

Наиболее экономически целесообразным в настоящее время является получение с помощью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощью ТЭНов в тепло для обогрева жилья и получения горячей воды. Эта схема имеет несколько преимуществ:

  • Отопление является основным энергопотребителем любого дома.
  • Схема ветрогенератора и управляющей автоматики кардинально упрощается.
  • Схема автоматики может быть в самом простом случае построена на нескольких тепловых реле.
  • В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.
  • Потребление тепла не так требовательно к качеству и бесперебойности, температуру воздуха в помещении можно поддерживать в широком диапазоне: 19-25 °С; в бойлерах горячего водоснабжения: 40-97 °С, без ущерба для потребителей.

Развитие

Строительство Фундамента для ветрогенератора Монтаж ветрогенератора

Индустрия домашних ветрогенераторов активно развивается, и за вполне умеренные деньги уже сейчас можно приобрести ветровую установку и на долгие годы обеспечить энергонезависимость своему загородному дому. Обычно для обеспечения электроэнергией небольшого дома вполне достаточно установки номинальной мощностью 1 кВт при скорости ветра 8 м/с. Если местность не ветреная, ветрогенератор можно дополнить фотоэлектрическими элементами или дизель-генератором, а ветрогенераторы с вертикальными осями могут быть дополнены меньшими ветрогенераторами (например, турбина Дарье может быть дополнена ротором Савониуса. При этом одно другому не мешает — источники будут дополнять друг друга).

Наиболее перспективными регионами для развития малой ветроэнергетики считаются регионы со стоимостью электроэнергии более $0,1 за кВт·ч. Себестоимость электроэнергии, производимой малыми ветрогенераторами в 2006 г. в США составляла $0,10-$0,11 за кВт·ч.

Американская ассоциация ветровой энергетики (AWEA) ожидает, что в ближайшие 5 лет себестоимость снизится до $0,07 за кВт·ч. По данным AWEA, в США в 2006 г. было продано 6807 малых ветровых турбин. Их суммарная мощность 17 543 кВт. Их суммарная стоимость $56 082 850 (примерно $3200 за кВт мощности). В остальном мире в 2006 г. были проданы 9502 малых турбины (без учёта США), их суммарная мощность 19 483 кВт.

Департамент Энергетики США (DoE) в конце 2007 года объявил о готовности финансирования особо малых (до 5 кВт) ветрогенераторов персонального использования.

AWEA прогнозирует, что к 2020 году суммарная мощность малой ветровой энергетики США вырастет до 50 тыс. МВт, что составит около 3 % от суммарных мощностей страны. Ветровые турбины будут установлены в 15 млн домах и на 1 млн малых предприятий. В отрасли малой ветроэнергетики будут заняты 10 тыс. человек. Они ежегодно будут производить продукции и услуг на сумму более чем $1 млрд.

В России тенденция установки ветрогенераторов для оснащения домов электричеством только зарождается. На рынке присутствуют буквально несколько производителей маломощных бытовых ветрогенераторов именно для домашнего использования. Цены на ветрогенераторы мощностью 1 кВт с полной комплектацией начинаются от 35-40 тыс. рублей (на 2012 год). Сертификация на установку данного оборудования не требуется.

Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

> См. также

  • Ветроэнергетика
  • Ветровая электростанция
  • Закон Беца

Примечания

  1. Виды ветрогенераторов. Дата обращения 5 февраля 2013. Архивировано 11 февраля 2013 года.
  2. 1 2 Билимович Б. Ф. Законы механики в технике. — М.: Просвещение, 1975. — Тираж 80000 экз. — С. 173.
  3. Почему у ветрогенераторов три лопасти, а не две или четыре? // Популярная механика. — 2018. — № 5. — С. 16.
  4. Что лучше — вертикальный или горизонтальный ветрогенератор? Преимущества и недостатки. КОЭФФИЦИЕНТ ИСПОЛЬЗОВАНИЯ ЭНЕРГИИ ВЕТРА.
  5. Брага Н. Создание роботов в домашних условиях. — М.: НТ Пресс, 2007. — С. 131 — ISBN 5-477-00749-4.
  6. В Норвегии запустят плавучую прибрежную ветровую турбину
  7. 1 2 Jorn Madslien. Floating wind turbine launched, BBC NEWS, London: BBC, стр. 5 June 2009. Дата обращения 4 мая 2019.
  8. New Tower Reaches High to Catch the Wind
  9. Spanish Companies Plan a 15-MW Wind Turbine December 1, 2010
  10. http://www.renewableenergyworld.com/rea/news/article/2012/07/wind-turbine-blades-push-size-limits?cmpid=rss Chris Webb Wind Turbine Blades Push Size Limits, 10.07.2012
  11. Hybrid Wind-Tidal Turbine To Be Installed off Japanese Coast Июль 12, 2013
  12. Tildy Bayar. World Wind Market: Record Installations, But Growth Rates Still Falling (англ.). renewableenergyworld.com (4 August 2011). — 10 крупнейших поставщиков 2010 года по данным компании. Дата обращения 28 мая 2013. Архивировано 28 мая 2013 года.
  13. http://www.windtech-international.com/industry-news/news/industry-news/global-wind-turbine-manufacturing-capacity-has-far-surpassed-demand Global wind turbine manufacturing capacity has far surpassed demand Published: 11 December 2014
  14. Stephen Lacey. Wind Turbine Prices Remain Low (англ.). renewableenergyworld.com (4 August 2010). — По данным компании, цены ветряных турбин снизилась на 15% за последние два года. Дата обращения 28 мая 2013. Архивировано 28 мая 2013 года.

Ветрогенераторы

Центр материаловедения разрабатывает, проектирует, изготавливает, поставляет и устанавливает ветрогенераторы и ветрогенераторные энергетические установки (ВЭУ) торговой марки ДОМ — комплексные автономные системы обеспечения энергоснабжением — ветрогенераторы разных мощностей по индивидуальным заказам.

Ветрогенераторы ДОМ WG предназначены для обеспечения бесперебойным источником электрической энергии небольших и больших объектов, таких как – особняки, коттеджи, загородные дома, отели, дачные участки, пасеки, туристические лагеря, фермерские хозяйства, производственные цеха или там, где отсутствует подача электроэнергии.

Ветроэнергетические установки (ВЭУ) торговой марки ДОМ -комплексные автономные системы обеспечения энергоснабжением — ветрогенераторы разных мощностей

Ветроэнергетическая установка (ВЭУ) на яхте

Ветроэнергетическая установка (ВЭУ) на яхте

Автономные источники питания (ветрогенератор и солнечная батарея ) на яхте

Комплексная автономная энергетическая система, включающая ветрогенератор и солнечную батарею

Одного ветрогенератора вполне достаточно для автономного функционирования придорожного магазина, небольшого отеля, ресторана, кафе. Но ветрогенераторы или ветрогенераторная установка в комплексе с солнечным коллектором для геолиосистемы горячего водоснабжения полностью обеспечат вашу энергетическую независимость, бесшумные ветрогенераторы создатут современный комфорт и нормальные энергетические условия функционирования объекта.

Вы можете заказать у нас ветрогенераторы разной мощности, полную систему ВЭУ ветро энергетической установки и даже систему: ветрогенераторы с системой горячего водоснабжения на солнечных коллекторах.Ветрогенераторы ДОМ WG предназначены для обеспечения бесперебойным источником электрической энергии для коттеджей, загородных домов, отелей, дачных участков, пасек, туристических лагерей, фермерских хозяйств, мест, где отсутствует поставка электроэнергии. Надежные Ветрогенераторы — это простой способ получить электроэнергию в таком количестве и тогда, когда нужно Вам. Комплексное решение запросов заказчика по ветрогенератору или ветрогенераторной энергетической установки: поставка, проектирование, установка, сервисное обслуживание.

Ветрогенератор ( ветроэлектрическая установка или сокращенно ВЭУ ) — устройство для преобразования кинетической энергии ветра в электрическую. Ветрогенераторы ДОМ WG предназначены для обеспечения безперебойным источником электрической энергии для коттеджей, загородных домов, отелей, дачних участков, пасек, туристических лагерей, фермерских хозяйств, мест, где отсутствует подача электроенергии.

Ветрогенераторы можно разделить на две категории: промышленные и домашние (для частного использования). Промышленные устанавливаются государством или крупными энергетическими корпорациями. Как правило, их объединяют в сети, в результате получается ветряная электростанция. Её основное отличие от традиционных (тепловых, атомных) — полное отсутствие как сырья, так и отходов. Единственное важное требование для ВЭС — высокий среднегодовой уровень ветра. Мощность современных ветрогенераторов достигает 6 МВт.

Строение малой ветряной установки

  • Ротор, лопасти, ветротурбина
  • Генератор (как правило это синхронный трёхфазный с возбуждением от постоянных магнитов напряжением =24 В)
  • Мачта с растяжками
  • Контроллер заряда аккумуляторов
  • Аккумуляторы (необслуживаемые на 24 В)
  • Инвертор (= 24 В ->

Строение промышленной ветряной установки

  • Фундамент
  • Силовой шкаф, включающий силовые контакторы и цепи управления
  • Башня
  • Лестница
  • Поворотный механизм
  • Гондола
  • Электрический генератор
  • Система слежения за направлением и скоростью ветра (анемометр)
  • Тормозная система
  • Трансмиссия
  • Лопасти
  • Система изменения угла атаки лопасти
  • Колпак ротора
  • Система пожаротушения
  • Телекоммуникационная система для передачи данных о работе ветрогенератора
  • Система молниезащиты

Типы ветрогенераторов

Существуют два основных типа ветротурбин: с вертикальной осью вращения и с горизонтальной. Вертикальноосевые ветрогенераторы работают при низких скоростях ветра, но имеют малую эффективность. Поэтому вертикальноосевые системы встречаются достаточно редко и применяются, как правило, в домашних системах.

В Украине индустрия ветрогенераторов для дома активно развивается. Уже сейчас за вполне умеренные деньги можно приобрести ветряную установку и на долгие годы обеспечить энергонезависимость своему загородному дому. Обычно для обеспечения электроэнергией небольшого дома вполне достаточно установки номинальной мощностью 1 кВт при скорости ветра 9 м/с. Если местность не ветреная, ветрогенератор можно дополнить фотоэлектрическими элементами или дизель-генератором. Источники будут замечательно друг друга дополнять.

На нижеследующих фотографиях представлены некоторые примеры элементов ветрогенераторов и моменты их сборки.

Ветрогенератор WG-1000

Детальная характеристика ветрогенератора WG-1000 номинальной мощности 1000 Вт

График зависимости мощности

ветрогенератора (вт) от скорости ветра (м/с)

График зависимости среднемесячной мощности

ветрогенератора (вт) от среднегодовой скорости ветра (м/с)

Ветрогенераторы WG-1000 1000 ВТ предназначены для обеспечения источником электрической энергии небольших объектов, таких как — дачные участки, пасеки, туристические лагеря, фермерские хозяйства, или там, где отсутствует сетевая подача электрической энергии. Максимальная мощность, которая может быть достигнута ветрогенератором, составляет 180 — 450 Квт на месяц для среднегодовых скоростей ветра 3-6 м/с, и 450 — 550 Квт на месяц для среднегодовых скоростей ветра 6 — 9 м/с.

Оптимальная конфигурация ВЭУ (ветро энергетической установки) состоит из:

— Ветрогенератора номинальной/максимальной мощности — 1000 Вт / 1420 Вт

— Инвертора мощности 2000 кВт

— Аккумуляторных батарей (в количестве 4 шт.) 12 В емкостью 200 А*час, которые способны аккумулировать 9,6 кВт*час электроэнергии

— Мачты-фермы ветрогенератора высотой 18 м.

Минимальная рабочая конфигурация ВЭУ (ветро энергетической установки) состоит из:

— Ветрогенератора номинальной/максимальной мощности — 1000 Вт / 1420 Вт

— Инвертора мощностью 1000 кВт

— Аккумуляторных батарей (в количестве 4 шт.) 12 В емкостью 40 А*час, которые способны аккумулировать 1,92 кВт*час электроэнергии

— Мачты на растяжках для ветрогенератора высотой 6 м.

По договоренности из заказчиком возможно индивидуальное изготовление мачты ветрогенератора желаемой конструкции и высоты.

Ветрогенераторы WG-2000

Детальные характеристики

Ветрогенератор от ДОМ тм

ветрогенератора (вт) от скорости ветра (м/с)

Оптимальная конфигурация ВЭУ (ветро энергетической установки) состоит из:

— Ветрогенератора номинальной/максимальной мощности — 2000 Вт / 3000 Вт

— Инвертора мощностью 4000 кВт

— Аккумуляторных батарей в количестве 10 шт. 12 В емкостью 200 А*час, которые способные аккумулировать 24 кВт*час электроэнергии

— Мачты-фермы ветрогенератора высотой 18 м.

Минимальная рабочая конфигурация ВЭУ (ветро энергетической установки) состоит из:

— Ветрогенератора номинальной/максимальной мощности — 2000 Вт / 3000 Вт

— Инвертора мощностью 2000 кВт

— Аккумуляторных батарей в количестве 10 шт. 12 В емкостью 40 А*час, которые способны аккумулировать 4,8 кВт*час электроэнергии

— Мачты ветрогенератора на растяжках высотой 9 м.

По договоренности из заказчиком возможно индивидуальное изготовление мачты ветрогенератора желаемой конструкции и высоты.

Ветрогенератор WG-5000

Детальные характеристики ветрогенератора WG-5000 номинальной мощности 5000 Вт

ветрогенератора (вт) от скорости ветра (м/с)

Оптимальная конфигурация ВЭУ (ветро энергетической установки) состоит из:

— Ветрогенератора номинальной/максимальной мощности — 5000 Вт / 7000 Вт

— Инвертора мощностью 5000 кВт

— Аккумуляторных батарей в количестве 20 шт. 12 В емкостью 200 А*час, которые способны аккумулировать 48 кВт*час электроэнергии

— Мачты-фермы ветрогенераторов высотой 18 м.

Оптимальная конфигурация ВЭУ (ветро энергетической установки) состоит из:

— Ветрогенератора номинальной/максимальной мощности — 5000 Вт / 7000 Вт

— Инвертора мощностью 5000 кВт

— Аккумуляторных батарей в количестве 20 шт. 12 В емкостью 100 А*час, которые способны аккумулировать 24 кВт*час электроэнергии

— Мачты ветрогенератора на ростяжках высотой 12 м.

По договоренности из заказчиком возможно индивидуальное изготовление мачты ветрогенератора желаемой конструкции и высоты.

Центр материаловедения

Научное, технологическое и лабораторное оборудование

R&D проекты

НОВОСТИ НАУКИ И НАНОТЕХНОЛОГИИ

С целью предотвратить опасные неисправности лептопов исследователи из Университета Дрекселя разработали рецепт, который может превратить раствор электролита — ключевой компонент большинства батарей — в защиту от химического процесса, который приводит к поломкам, связанным с батареями.

20 июня 2017 года по решению академического совета директору Института Наноматериалов им. А. Дж. Дрекселя, профессору Юрию Гогоци было присвоено звание Почетного доктора Института проблем материаловедения им. Францевича Национальной академии наук Украины..

Сейчас значительная часть жизни ученого Юрия Гогоци — это международные полеты из США по всему миру, лекции, открытие лабораторий, редактирование научного журнала ACS Nano (18-того в рейтинге Google Scolar среди тысяч). И как минимум две статьи каждый год для самых влиятельных научных журналов мира Nature и Science.

Жизнь Юрия Гогоци – это постоянные перелеты между топовыми лабораториями мира, написание статей в лучших научных журналов мира и исследования материалов, которые могут изменить мир вокруг. Ученый из Киева ежегодно получает более миллиона долларов на лабораторные эксперименты, правда, только за границей. Прочитать лекции в Украине его приглашают крайне редко.

Его труды цитируют чаще, чем многих нобелевских лауреатов, он получает на исследования 2,2 миллиона долларов от родного университета, однако в Украине о Юрия Гогоци знают немногие: лишь несколько публикаций о нем в сети и 2-3 приглашение на выступления в год.

Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского»

Корпус №9, ауд. 101

Дата и время проведения: 8 июня в 13:00

Институт проблем материаловедения им.Францевича НАНУ

Главный корпус, Актовый зал (к. 208)

Дата и время проведения: 7 июня в 12:00

Ученый расскажет, как сочетаются инновации и фундаментальные исследования, сколько будут работать традиционные батарейки и аккумуляторы в будущем и какими будут источники света.

Среди экспертов в студии World Science Fair 2017 выдающийся ученый из Университета Дрекселя профессор Юрий Гогоци, лауреат премии имени Фреда Кавли.

7 июня в 14:30 в Научном Парке «Киевская политехника» состоится семинар с участием Виктора Корсуна (Vic Korsun, USA) и Дугласа Грэхема (Douglas Graham, USA), которые представят новую платформу для Инновационного менеджмента, продвижения, лицензирования, передачи технологий и коммерциализации

На данный момент синтезированы и изучены более двадцати максенов (MXenes) — двумерных карбидов, нитридов и карбонитридов переходных металлов, и еще ожидается, что десятки их будут синтезированы. Применение высоко электропроводящих максенов является очень перспективным для хранения энергии, экранирования и защиты от электромагнитных помех, электрокатализа, плазмоники и многих других приложений.

К вниманию молодых ученых — отличная возможность для начала успешной научной карьеры под руководством известного авторитетного профессора Юрия Гогоци.

— Позиция в одном из лучших университетов Китая с возможностью стажировки в США.

— Работа под руководством наиболее цитируемого украинского ученого, работающего зарубежом, профессора Юрия Гогоци;

— Научная работа в области новых двумерных наноматериалов для энергетики;

— Цель работы: достижение прорыва в области возобновляемых источников энергии, публикация статей в ведущих международных журналах.

— Начальный срок — 1 год с возможностью продления до трех лет. Оплата в зависмости от квалификации.

20 октября 2016 года в торжественной обстановке прошла официальная церемония назначения доктора Юрия Гогоци почетным профессором Цзилиньского университета, Чанчунь, провинция Цзилинь, Китай.

Алексей Гогоци, директор Центра материаловедения, был приглашен профессором Хан Вей в Цзилиньский Университет для обсуждения совместного сотрудничества с научными подразделениями Университета в области разработки, синтеза материалов и технологии изготовления суперконденсаторов.

Группа исследователей из Университета Дрекселя и Корейского института науки и технологий работает над очисткой от таких электромагнитных помех с помощью нанесения на компоненты тонкой защитной пленки наноматериала под названием Максин.

Они встретились с китайскими партнерами по научным исследованиям из Лаборатории физики и технологий для современных батарей Университета Цзилинь

Профессор Юрий Гогоци сделал огромный вклад в изучение и понимание механизмов емкостного наколения энергии.

Победителем престижной международной научной премии 2016 Nano Energy Award стал профессор Юрий Гогоци, директор Института наноматериалов Университета Дрекселя

На форуме «Открытые инновации», открывшемся 28 октября 2015 г. в Москве, состоялась церемония вручения премии RUSNANOPRIZE за достижения в области нанотехнологий Юрию Гогоци и Патрису Симону

Объявлен шорт-лист претендентов на Международную премию в области нанотехнологий RUSNANOPRIZE 2015, в числе трех команд — претендентов проф. Юрий Гогоци, Университт Дрекселя (США) и проф. Патрис Симон, Университет Тулузы им. Поля Сабатье (Франция).

Промышленные ветрогенераторы
MRC — Центр Материаловедения, проектная производственная инжиниринговая научно-технологическая компания, Киев, Украина. Materials Research Centre — research and development of porous carbon nanomaterials and laboratory experimental equipment, Kiev, Ukraine

Ветроэнергетика как отрасль может базироваться только на использовании крупных и высокопроизводительных ветровых турбин. Установки малой мощности, обеспечивающие лишь отдельные дома или группы потребителей, интересны только как автономные источники энергии. Крупные ветротурбины успешно используются в странах Запада, США, Китае. Для использования таких устройств требуется достаточно сильный и стабильный ветер, что свойственно не всем регионам.

Как устроены мощные промышленные ветрогенераторы?

Существующие ныне мощные ветрогенераторы имеют практически одинаковую конструкцию. За основу взят горизонтальный ротор с крыльчаткой. Большие размеры лопастей создают высокую площадь сопротивления потоку ветра, поэтому обычно устанавливается по три лопасти. Масса таких установок очень велика — одна из величайших установок Enercon E-126 весит 6000 т. При таких параметрах требуется достаточно сильный и ровный ветер.

Для старта вращения используются специальные электродвигатели. Большинство моделей не имеет устройства наведения, обходятся установкой на преобладающем направлении потока. Обычное место использования — степные или пустынные регионы, прибрежные или шельфовые районы с постоянными и ровными ветрами.

Конструкция мощного ветрогенератора состоит из следующих элементов:

  • опорная башня. У образцов меньших размеров это мачта. Башня имеет коническую форму, способствующую большей устойчивости и равномерному распределению нагрузок. Изготавливается на месте путем последовательной заливки бетоном соответствующей опалубки. В основании имеется мощная бетонная площадка, являющая цоколем фундамента, обеспечивающего неподвижность и устойчивость
  • гондола. Это камера, внутри которой расположены генераторный отсек, устройства передачи вращения. К ней же присоединяется ротор, конструктивно являющийся продолжением гондолы и образуюший вместе с ней обтекаемую форму. Внешняя часть ротора состоит из хаба и лопастей. Хаб — это центральный обтекатель, установленный на валу генератора и служащий для присоединения лопастей. Гондола имеет возможность вращения вокруг башни для установки на ветер, для чего используется асинхронный электродвигатель и зубчатая передача, опоясывающая всю верхнюю часть башни. Возможность вращения имеется не у всех моделей, для шельфовых ветряков, работающих на потоках двух противоположных направлений, эта функция необязательна.
  • генератор турбины представляет собой устройство кольцевого типа. Ротор турбины конструктивно объединен с ротором генератора, это снижает потери и уменьшает материалоемкость. Для подобных конструкций принципиально важно в максимальной степени исключить узлы передачи вращения, взамен применяя единые цельные элементы.

Лопасти изготавливаются из специального композитного волокна с включениями стали. В зависимости от размеров они изготавливаются целиком или набираются из отдельных частей. Устройство лопастей предусматривает возможность изменения профиля или угла поворота, позволяя регулировать аэродинамику в соответствии с режимом ветрового потока.

В зависимости от размеров, фирмы-изготовителя и назначения ветряка, могут иметься какие-либо изменения в конструкции, дополнения или иные особенности, присущие только данной модели.

Размеры ветряка

Промышленные ветрогенераторы большой мощности обладают впечатляющими габаритами. Так, уже упоминавшийся Enercon E-126 имеет полную высоту 198 м при размахе лопастей 128 м. Площадь, которую ометают такие лопасти, составляет 12668 м2.

Размеры других ветряков соответствуют вырабатываемой мощности. Существуют более крупные или мелкие модели, но все они велики и обладают большим весом. При этом, поверхность земли занимает только основание мачты, вся остальная площадь пригодна для использования под сельское хозяйство.

Примечательно, что мощные ветряки нерентабельны по отдельности. Они используются чаще всего в составе больших ветроэлектростанций, занимающих достаточно большие площади. В составе комплексов насчитываются десятки и даже сотни отдельных установок, объединенных в единую систему и выдающие суммарную мощность в несколько мВт. Они создаются в местах с оптимальными ветровыми условиями, способными обеспечить равномерную нагрузку и стабильную производительность оборудования.

Большие размеры означают высокие цены на оборудование. Так, стоимость турбины Enercon E-126 составляет 11 млн евро. Можно примерно подсчитать стоимость целой ветроэлектростанции, эксплуатационные расходы и затраты на доставку и монтаж таких гигантов. Соответственно, себестоимость энергии достаточно высока, а срок службы относительно низок — около 20 лет.

Промышленные ветровые электростанции

Функционирование нескольких сотен крупных ветряков способно создавать большие мощности. Создание ветровых электростанций позволило решить проблемы с электроснабжением регионов, не имеющих возможности строительства ГЭС или АЭС.

Примечательно, что запрет на строительство АЭС в ряде регионов мира и отсутствие других возможностей явились причинами возникновения множества ВЭС, хотя эксплуатационные и экономические параметры ветряков уступают более традиционным вариантам выработки энергии. Кроме того, ветроэнергетика признана экологически чистым направлением, что также сыграло немалую роль в развитии отрасли.

В последнее время наблюдаются две параллельные тенденции:

  • рост числа мощных установок, объединенных в большие станции
  • возрастание интереса к частным источникам, дающим возможность автономного существования без использования сетевых ресурсов

Возникает конкурентная ситуация, когда большие вложения в огромные комплексы перестают покрываться доходами от них, а небольшие установки становятся все более выгодными и удобными. Будущее покажет, какая система станет наиболее распространенной и эффективной.

>Рекомендуемые товары

Устройство промышленных ветрогенераторов большой мощности: размеры ветряка, сравнительные характеристики и промышленное применениеРейтинг 5 ✔ 15

Грандиозные проекты

Один из самых великих проектов ветроэнергетики — строительство ветряка «Энеркон Е-126». Это крыльчатый генератор с горизонтальной осью вращения и 3-мя лопастями. На сегодняшний день enercon является самым большим и мощным ветряком в мире.

Самый большой в мире промышленный ветрогенератор Enercon E-126

Длина одного крыла 63 м, диаметр окружности, описываемой лопастями – 127 м, высота основания – 135 м. Вес этой огромной конструкции порядка 6000 тонн. Максимальная мощность генератора 7,58 МВт.

Установлено это чудо технической мысли рядом с немецким городом Эмдене в 2007 году. Лопасти ветряка совершают 5-11,7 оборотов/мин, а минимальная скорость ветра для вращения крыльев 3 м/с.

Ветрогенератор Vestas V164-8.0 MW

Компания Vestas возвела ветровой генератор того же типа V164-8.0 MW мощностью 8 МВт. Высота мачты составила 140 м, длина одного крыла 80 м.

Морской ветрогенератор

Большой плавучий ветряк был воздвигнут японцами после взрыва на АЭС Фукусима. Высота мачты около 105 м, мощность 7 МВт.

Ветряная электростанция San Gorgonio Pass, Калифорния. Включает 3218 ветряных генераторов, производящих 615 МВ электроэнергии.

Ветроэлектростанция Мэпл Ридж — крупнейшая в штате Нью-Йорк. Введена в эксплуатации в 2006 году. Ферма на 75% удовлетворят потребности Нью-Йорка в электричестве.

Ветряная ферма Lynn and Dowsing, Линкольншир, Великобритания, работает с 2008 года. Обеспечивает энергией 130 000 домов.

Ветровая электростанция на острове Роса в Антарктиде производит 999 кВт (3 турбины, каждая генерирует по 333 кВт). Установлена ферма на холме Кратер Хил для снабжения станций Скотта (Новая Зеландия) и Макмердо (США). Ветряки на 11% удовлетворяют нужды исследовательских станций.

Арктический поселок Амдерма

Электростанция на ветряных генераторах в российском арктическом поселке Амдерма. Состоит из 4-х турбин, генерирующих до 677,2 МВт (38,6% от потребляемой жителями энергии). Цена 1 кВт ветроэнергии составляет порядка 20 руб, против 65,51 руб, которые жители Амдерма платят за электричество, вырабатываемое дизельным генератором. Дизель, используемый в местных электростанциях, дорог и сильно загрязняет природу. Применение ветрогенераторов позволяет заметно удешевить энергию и улучшить экологическую обстановку. А некоторые северные умельцы мастерят ветрогенераторы своими руками.

Tehachapi Pass, Калифорния, одна из старейших станций, эксплуатируемых ныне. Станция возведена в 1980 году, периодически ремонтируется и обновляется.

Ферма Уитли, Шотландия, включает 140 установок, обеспечивая электричеством 180 000 домов. Это одна из самых мощных станций Европы.

Китайская ветроферма Ганьсу мощностью порядка 8 ГВт. Построена в городе Цзюцюань и постоянно модернизируется. В 2017 году мощность планируется поднять до 17 ГВт, к 2020 – до 20 ГВт.

Летающий ветряк Buoyant Airborne Turbine

Летающий ветряк Buoyant Airborne Turbine – трехлопастной генератор с горизонтальной осью в специальном дирижабле. Находится установка на Аляске, в 600-х метрах над уровнем земли. Рабочим газом дирижабля является гелий. Мощность вентрогенератора 30 кВт.

Ветроферма в российском поселке Усть-Камчатск, Камчатка, вырабатывающая 1 МВт. В комплекс входит 4 ветровых машины.

Ветроэнегростанция Муппандал, Индия, производящая 1500 МВт. Построена в штате Тамил Наду в 2011 году.

Электростанция на ветряках Джайсалмер, Индия, штат Раджистан, производит 1063 МВт. Введена в эксплуатацию в 2012 году.

Электростанция Альта, Калифорния, выдает 1020 МВт энергии. Запущена в 2010 году.

Honda возвела ветровую электростанцию в Бразилии для снабжения своего автомобильного завода. Мощность установки 95 000 МВт/год.

Ветряные фермы Южной Австралии до половины потребляемой энергии. Одна из наиболее мощных станций – Woodlawn.

2 больших ветрогенератора, суммарной мощностью 1520 МВт, построили в Жамбылской области Казахстана.

Строительство другой, более мощной ветровой машины «Sea Titan», ведет американская компания AMSC. Длина лопасти, согласно проекту, будет 95 м. Предполагается, что это будет самый мощный ветрогенератор в мире.

Популярные производители

Промышленные ветровые генераторы российского и импортного производства можно свободно приобрести на российском рынке. Наиболее известные компании-производители ветряков представлены ниже.

  1. «Algatec Solar». Это российский филиал немецкой компании «Algabel Solar» по производству ветрогенераторов и солнечных батарей.
  2. «ALTAL GRUP» — российская компания, специализирующаяся на производстве ветряков и тепловых насосов для различных климатических зон, включая районы крайнего севера.
  3. «Vestas» (реализует продукцию через официальных дилеров) – старейшая немецкая компания по изготовлению ветряков. Основана в 1898 году как кузнечная мастерская, с 1979 производит ветровые установки.
  4. «EDS Group» производство и продажа оборудования для областей энергетики.
  5. «ЭнерджиВинд» — российская компания, выпускающая недорогие ветряки хорошего качества. Ветровой генератор мощностью 1 кВт стоит 54 000 руб.
  6. «Махаон» — российский производитель малошумных ветряков с вертикальной осью.
  7. «ГРЦ-Вертикаль» — Россия, Миасс – производитель альтернативных устройств генерации энергии. Выпускает много разных модификаций ветряков мощностью от 0,1 до 30 кВт.
  8. «СКБ Искра» — производитель ветряков различной конструкции. Стоимость установок до 400 000 руб.
  9. «Сапсан-Энергия» — Московская компания, занимающаяся разработкой и производством агрегатов, генерирующих электричество с помощью экологически чистых источников.
  10. «Ветро Свет» — Санкт-Петербург, производитель ветрогенераторов мощностью до 2-х кВт.
Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *