Опубликовано

Резисторный делитель напряжения

Делитель напряжения

Дели́тель напряже́ния — устройство, в котором входное U i n {\displaystyle U_{in}} и выходное U o u t {\displaystyle U_{out}} напряжение связаны коэффициентом передачи 0 ⩽ a ⩽ 1 {\displaystyle 0\leqslant a\leqslant 1} : U o u t = a ∗ U i n {\displaystyle U_{out}=a*U_{in}} .

Делитель напряжения можно представить как два последовательных участка цепи, называемые плечами, сумма напряжений на которых равна входному напряжению. Плечо между нулевым потенциалом и средней точкой называют нижним (с него обычно снимается выходное напряжение делителя), а другое — верхним. Различают линейные и нелинейные делители напряжения. В линейных выходное напряжение изменяется по линейному закону в зависимости от входного. Такие делители используются для задания потенциалов и рабочих напряжений в различных точках электронных схем. В нелинейных делителях выходное напряжение зависит от коэффициента a {\displaystyle a} нелинейно. Нелинейные делители напряжения применяются в функциональных потенциометрах. Сопротивление может быть как активным, так и реактивным, а также и вовсе нелинейным, как, например, в параметрическом стабилизаторе напряжения.

Резистивный делитель напряжения

Схема простейшего резистивного делителя напряжения

Простейший резистивный делитель напряжения представляет собой два последовательно включённых резистора R 1 {\displaystyle R_{1}} и R 2 {\displaystyle R_{2}} , подключённых к источнику напряжения U {\displaystyle U} . Поскольку резисторы соединены последовательно, то ток через них будет одинаков в соответствии с первым правилом Кирхгофа. Падение напряжения на каждом резисторе согласно закону Ома будет пропорционально сопротивлению (ток, как было установлено ранее, одинаков):

U = I R {\displaystyle \ U=IR} .

Для каждого резистора имеем:
{ U 1 = I R 1 U 2 = I R 2 . {\displaystyle \left\{{\begin{array}{l l}U_{1}=IR_{1}\\U_{2}=IR_{2}.\end{array}}\right.}
Сложив выражения, получаем:

U 1 + U 2 = I ( R 1 + R 2 ) . {\displaystyle U_{1}+U_{2}=I(R_{1}+R_{2}).}

Далее:

I = U 1 + U 2 R 1 + R 2 = U R 1 + R 2 . {\displaystyle I={\frac {U_{1}+U_{2}}{R_{1}+R_{2}}}={\frac {U}{R_{1}+R_{2}}}.}

Из этого следует:

{ U 1 = I R 1 = U R 1 R 1 + R 2 U 2 = I R 2 = U R 2 R 1 + R 2 . {\displaystyle \left\{{\begin{array}{l l}U_{1}=IR_{1}=U{\frac {R_{1}}{R_{1}+R_{2}}}\\U_{2}=IR_{2}=U{\frac {R_{2}}{R_{1}+R_{2}}}.\end{array}}\right.}

Следует обратить внимание, что сопротивление нагрузки делителя напряжения должно быть много больше собственного сопротивления делителя, так, чтобы в расчетах этим сопротивлением, включенным параллельно R 2 {\displaystyle R_{2}} , можно было бы пренебречь. Для выбора конкретных значений сопротивлений на практике, как правило, достаточно следовать следующему алгоритму:

1. Определить величину тока делителя, работающего при отключенной нагрузке. Этот ток должен быть значительно больше тока, потребляемого нагрузкой (обычно принимают превышение от 10 раз по величине), но, однако, при этом указанный ток не должен создавать излишнюю нагрузку на источник напряжения U {\displaystyle U} .

2. Исходя из величины тока, по закону Ома определяют значение суммарного сопротивления R = R 1 + R 2 {\displaystyle R=R_{1}+R_{2}} .

3. Выбрать конкретные значения сопротивлений из стандартного ряда, отношение величин которых близко́ требуемому отношению напряжений, а сумма величин близка расчетному сопротивлению R {\displaystyle R} .

При расчете реального делителя необходимо учитывать температурный коэффициент сопротивления, допуски на номинальные значения сопротивлений, диапазон изменения входного напряжения и возможные изменения свойств нагрузки делителя, а также максимальную рассеиваемую мощность резисторов — она должна превышать выделяемую на них мощность.

Применение

Делитель напряжения имеет важное значение в схемотехнике. В качестве реактивного делителя напряжения как пример можно привести простейший электрический фильтр, а в качестве нелинейного — параметрический стабилизатор напряжения.

Делители напряжения использовались как электромеханическое запоминающее устройство в АВМ. В таких устройствах запоминаемым величинам соответствуют углы поворота реостатов. Подобные устройства могут неограниченное время хранить информацию.

Цепи обратной связи в усилителях

С помощью резистивного делителя напряжения в цепи обратной связи задаётся коэффициент усиления каскада на ОУ.

Простейшие электрические фильтры

RC, LC, RL-цепи, представляющие собой примеры простейших электрических фильтров, могут рассматриваться как частотно-зависимые делители напряжения, в которых в соответствующих плечах используются реактивные элементы.

Усилитель напряжения

Делитель напряжения может использоваться для усиления входного напряжения — это возможно, если | R 2 | ⩾ | R 1 | {\displaystyle |R_{2}|\geqslant |R_{1}|} , а R 1 {\displaystyle R_{1}} — отрицательно, например как на участке вольт-амперной характеристики туннельного диода.

Параметрический стабилизатор напряжения

Основная статья: Параметрический стабилизатор на стабилитроне

Делитель напряжения может использоваться для стабилизации входного напряжения — это возможно, если в качестве нижнего плеча делителя использовать стабилитрон.

Ограничения в применении резистивных делителей напряжения

Для обеспечения приемлемой точности работы делителя требуется проектировать его таким образом, чтобы величина тока, протекающего через цепи делителя, была не менее чем в 10 раз больше, нежели ток, протекающий через нагрузку. Увеличение этого соотношения до ×100, ×1000 и более при прочих равных условиях пропорционально повышает точность работы делителя. Таким же образом, вообще говоря, должны соотноситься и величины сопротивлений делителя и нагрузки. Нетрудно видеть, что идеальным (с точки зрения КПД) режимом работы делителя, является режим т.н. холостого хода, т.е. режим работы при отключенной нагрузке, когда её свойствами можно пренебречь. Увеличение тока нагрузки приводит к существенному падению КПД делителя, из-за того, что существенная часть мощности тратится на нагрев резисторов делителя. Вот почему резистивный делитель напряжения нельзя использовать для подключения мощных электрических приборов: электрические машины, нагревательные элементы. Для решения этой задачи используют другие схемотехнические решения, в частности применяют стабилизаторы напряжения. Если же не требуется большой мощности, но требуется исключительно высокая точность поддержания величины выходного напряжения, то используют разнообразные источники опорного напряжения.

> Нормативно-техническая документация

  • ГОСТ 11282-93 (МЭК 524-75) — Резистивные делители напряжения постоянного тока

> См. также

  • Делитель тока

Расчет делителя напряжения на резисторах

Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.

Формула делителя напряжения

Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.

Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:

Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:

Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:

Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:

И, на какое-то время, мы можем упростить схему:

Закон Ома в его наиболее простом вид: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:

А так как I1 равно I2, то:

Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.

Применение делителя напряжения на резисторах

В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

Потенциометры

Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

Резистивные датчики

Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

Пример работы делителя напряжения на фоторезисторе.

Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

Калькулятор для расчета делителя напряжения

Делитель напряжения — это простой и удобный способ получить нужное напряжение в определенной точке схемы. Он используется в цепях обратной связи для измерения выходных параметров, когда на выходе десятки вольт, а измерительный вход микросхемы рассчитан на единицы или доли вольт и во множестве других целей. Простейший вариант строится на резисторах их может быть 2 и больше.

Давайте разберемся как рассчитать данный элемент цепи. Можно сделать это вручную или использовать следующий онлайн калькулятор, который выполняет расчет делителя напряжения на резисторах:

Главное, что нельзя забывать, так это то, что ток делителя должен быть на 1 и более порядков выше, чем входной ток нагрузки. Это нужно, чтобы минимизировать просадки напряжения и сохранить стабильность выходных параметров. После этого приступайте к расчетам по току и напряжению.

Если ваш делитель состоит из двух элементов, то ток через него рассчитывают по формуле:

I=Uвх/(R1+R2)=Uвх/Rобщ

Или сопротивление по заданному току:

Rобщ=Uвх/I

Нам известно R общее при заданном I, входное напряжение и сколько нам нужно получить на выходе. Рассчитываем сопротивления:

R2=Uвых*Rобщ/Uвх

Тогда:

R1=Rобщ-R2

Если нужно определить параметры цепочки по известным сопротивлениям и входному напряжению — рассчитывают выходное по формуле:

Uвых=Uвх*R2/R1+R2

Значит, зная напряжение на выходе можно рассчитать его и на входе:

Uвх=(Uвых*R1+R2)/R2

Это основной метод расчета резистивного делителя, бывает еще и емкостной или индуктивный. В этом случае вместо сопротивления активного R в расчетах фигурирует сопротивление реактивное Xc или Xl.

Для регулировки выходного напряжения резисторного делителя вместо нижнего сопротивления устанавливают подстроечный или переменный резистор. Расчеты при этом ничем не отличаются — в них используют максимальное значение на переменном резисторе. Также можно ограничить минимальное выходное напряжение, установив последовательно с переменным постоянное, тогда минимальное рассчитывается без учета переменника. Такую схему удобно использовать, если у вас резисторы с большим допуском, а нужно получить точные выходные параметры.

Вы можете сэкономить время, воспользовавшись онлайн калькулятором, в нем вы можете рассчитать номиналы элементов с учетом нужных выходного и входного напряжения. Использование калькулятора сэкономит ваше время, если нужно посчитать большую схему или вы запутались и не можете разобраться, как посчитать резистивный делитель с нагрузкой.

Учтите, что элементы нужно подбирать не только по номиналу, но и по мощности, потому что при большом токе потребления нагрузки, нужно рассчитывать схему на большие токи. В результатах расчетов онлайн калькулятора будет указано, на сколько ватт нужен резистор.

Делитель напряжения. Расчет делителя напряжения.

Делитель напряжения, одна из широко используемых схем соединения резисторов. Делитель напряжения позволяет уменьшить выходное напряжение. Например, на вход делителя подается 12 Вольт, а на выходе 3 Вольта, или сколько нужно, но не больше входного напряжения делителя. Схема соединения резисторов, о которой мы говорим, может использоваться только для слаботочной нагрузки, чуть позже я объясню почему. Вот собственно и сама схема делителя:

Делитель напряжения вы все ни один раз видели, например, регулятор громкости. Регулятором громкости является переменный резистор, соединенный по схеме потенциометра.

Потенциометр, можно представить как два резистора, соединённых последовательно, при вращении рукоятки один резистор уменьшает свое сопротивление, другой увеличивает.

В делителе напряжения, входное напряжение полностью падает на двух резисторах. Например, входное напряжение 40 Вольт и если на одном резисторе падает 3 Вольта, то на другом 37 Вольт.

Расчет делителя напряжения.

Сразу скажу одно правило, ток, протекающий через резистор R1 и R2 должен быть как минимум в 10 раз больше, чем ток нагрузки (иначе будет просадка напряжения на выходе). Например, если к нашему девайсу будет подсоединена лампа, потребляющая ток 40 мА, то делитель нужно рассчитывать так, чтобы ток, текущий через резисторы R1 и R2 был минимум 400 мА (в 10 и более раз больше).

И еще один нюанс. Ток делителя не только должен быть больше тока нагрузки в 10 раз, но и должен быть меньше тока, выдаваемого источником тока. Вот пример, мы посадили на выход делителя напряжения лампу, потребляющую 200 мА, соответственно ток через делитель потечет как минимум в 10 раз больше (2 Ампер), но если источник тока у нас рассчитан выдавать 1 Ампер, то он просто напросто не вытянет и сгорит, либо сработает защита.

Поэтому есть правило. При расчете делитель напряжения нужно рассчитывать так, чтобы ток через него был как минимум в 10 раз больше тока нагрузки и меньше максимального тока источника. Отсюда делитель напряжения используют для слаботочных нагрузок.

Входной ток (ток делителя) ищется по такой формуле:

Например, у меня входное напряжение 12 Вольт (10 Ампер), мне нужен делитель напряжения, у которого на выходе нагрузка напряжением 3 Вольта и током потребления 20 мА (зацеплю светодиод).

Ток делителя Iвх должен быть минимум в 10 раз больше тока нагрузки, возьму в 20 раз. Получается Iвх = 20 мА*20=400мА.

Найдем теперь сумму резисторов R1 и R2 (Rобщ) зная ток, текущий через них 0,4 Ампер и напряжение на них 12 Вольт. Rобщ=12 Вольт/0,4 Ампер = 30 Ом.

Далее нахожу номинал резистора R2 по следующей формуле:

R2 = (3 Вольта*30 Ом)/12 Вольт = 7,5 Ом.

Теперь нахожуу R1, R1 = Rобщ – R2 = 30 – 7,5 = 22,5 Ом.

Давайте проверим по этой формуле:

Iвх = 3 Вольт / 7,5 Ом = 0,4 Ампер.

Iвх = 12 Вольт / 30 Ом = 0,4 Ампер.

Рассчитаем мощность резисторов. Напряжение на R2 = 3 Вольт, значит напряжение на R1 = Uвх-Uвых = 9 Вольт (я уже говорил, если на одном падает 3 Вольта, то на втором резисторе делителя падает остальное напряжение).

Мощность ищется по следующей формуле:

P1 = 9 Вольт* 0,4 Ампер = 3,6 Вт (из стандартного ряда 5 Вт);

P2 = 3 Вольт* 0,4 Ампер = 1,2 Вт (из стандартного ряда 2 Вт);

Расчет закончен.

Вот еще несколько формул, вы их можете использовать для расчета делителя напряжение в зависимости от того, какими известными значениями вы владеете.

  • Проверка расчета практически.

Соберем схему:

При расчете мы получили следующие номиналы резисторов, R1 = 22,5 Ом (из стандартного рядя 22 Ом), R2 = 7,5 Ом.

По мощности у меня оба резистора 2 Вт, поэтому R1 у меня сильно греется.

Входное напряжение делителя 12 Вольт.

Напряжение, которое падает на R1 = 22 Ом почти 9 Вольт.

Напряжение, которое падает на R2 = 7,5 Ом (наше выходное напряжение делителя) = 3 Вольта.

Ток, текущий через R1 и R2 (входной ток делителя) = 430 мА.

Светодиод загорается и горит в нормальном режиме, не перегорая.

Если пренебрегать погрешностями резисторов и прибора, то расчет верен.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *