Опубликовано

Проводники и полупроводники

Электрический изолятор

Смотреть что такое «Электрический изолятор» в других словарях:

  • электрический изолятор — электрический изолятор; изолятор Конструкция, предназначенная для изолирования и механического крепления токоведущих частей … Политехнический терминологический толковый словарь

  • изолятор — диэлектрик; отрасл. изолятор Вещество, основным электрическим свойством которого является способность к поляризации и в котором возможно существование электростатического поля. электрический изолятор; изолятор Конструкция, предназначенная для… … Политехнический терминологический толковый словарь

  • ИЗОЛЯТОР — всякое тело, не проводящее электричества; употребляется дли разобщения проводников, для изоляции. В частности: фарфоровые колпачки, стеклянные ролики, вокруг котор. обматываются и через котор. проходят проволоки телеграфа, телефона и проч. Полный … Словарь иностранных слов русского языка

  • изолятор для вилки — изолятор для штырей изолятор для штыревых контактов изолятор для штыревых контакт деталей Тематики соединитель электрический (разъем) Синонимы изолятор для штыревых контакт деталейизолятор для штыревых контактовизолятор для штырей EN… … Справочник технического переводчика

  • изолятор для розетки — изолятор для гнезд изолятор для гнездовых контактов изолятор для гнездовых контакт деталей Тематики соединитель электрический (разъем) Синонимы изолятор для гнездизолятор для гнездовых контакт деталейизолятор для гнездовых контактов EN… … Справочник технического переводчика

  • изолятор — Изделие, служащее для электрической изоляции и механического крепления частей электрических устройств, находящихся под разными потенциалами изолятор Электротехническое устройство, предназначенное для электрической изоляции и… … Справочник технического переводчика

  • Изолятор (электрический) — Изолятор электрический, устройство для электрической изоляции и механической связи частей электрического устройства, находящихся под различными электрическими потенциалами. И. состоит из диэлектрика (собственно И.) и деталей для его крепления… … Большая советская энциклопедия

  • изолятор (электрического соединителя) оснащенный замковым устройством с принудительным защелкиванием — Тематики соединитель электрический (разъем) EN positive latch design … Справочник технического переводчика

  • ИЗОЛЯТОР ЭЛЕКТРИЧЕСКИЙ — 1) вещество с очень большим уд. электрич. сопротивлением (диэлектрик). 2) Электротехнич. устройство для изоляции частей электрооборудования, находящихся под разными электрич. потенциалами, и предупреждения КЗ на землю, корпус, сооружение.… … Большой энциклопедический политехнический словарь

  • Изолятор — В Викисловаре есть статья «изолятор» Изолятор средство для изоляции (отделения, обособления, отграничения) чего либо от остальной среды. Изоляторами … Википедия

Описание проводников

Проводники обладают наивысшей электропроводностью из всех типов веществ. Все проводники подразделяются на две большие подгруппы:

  • Металлы (медь, алюминий, серебро) и их сплавы.
  • Электролиты (водный раствор соли, кислоты).

В веществах первой подгруппы перемещаться способны только электроны, поскольку их связь с ядрами атомов слабая, в связи с чем, они достаточно просто от них отсоединяются. Так как в металлах возникновение тока связано с передвижением свободных электронов, то тип электропроводности в них называется электронным.

Параллельное соединение проводников

Из проводников первой подгруппы используют в обмотках электромашин, линиях электропередач, проводах. Важно отметить, что на электропроводность металлов оказывает влияние его чистота и отсутствие примесей.

Движиение электрического тока

В веществах второй подгруппы при воздействии раствора происходит распадение молекулы на положительный и отрицательный ион. Ионы перемещаются вследствие воздействия электрического поля. Затем, когда ток проходит через электролит, происходит осаждение ионов на электроде, который опускается в данный электролит. Процесс, когда из электролита под воздействием электрического тока выделяется вещество, получил название электролиз. Процесс электролиза принято применять, к примеру, когда добывается цветной металл из раствора его соединения, либо при покрытии металла защитным слоем иных металлов.

Описание диэлектриков

Диэлектрики также принято называть электроизоляционными веществами.

Все электроизоляционные вещества имеют следующую классификацию:

  • В зависимости от агрегатного состояния диэлектрики могут быть жидкими, твердыми и газообразными.
  • В зависимости от способы получения — естественными и синтетическими.
  • В зависимости от химического состава – органическими и неорганическими.
  • В зависимости от строения молекул – нейтральными и полярными.

К ним относятся газ (воздух, азот, элегаз), минеральное масло, любое резиновое и керамическое вещество. Данные вещества характеризуются способностью к поляризации в электрическом поле. Поляризация представляет собой образование на поверхности вещества зарядов с разными знаками.

Пример диэлектрика

В диэлектриках содержится малое количество свободных электронов, при этом электроны имеют сильную связь с ядрами атомов и только в редких случаях отсоединяются от них. Это означает, что данные вещества не обладают способностью проводить ток.

Данное свойство весьма полезно в сфере производства средств, используемых при защите от электрического тока: диэлектрические перчатки, коврики, ботинки, изоляторы на электрическое оборудование и т.п.

О полупроводниках

Полупроводник выступает в роли промежуточного вещества между проводником и диэлектриком. Самыми яркими представителями данного типа веществ являются кремний, германий, селен. Помимо этого, к данным веществам принято относить элементы четвертой группы периодической таблицы Дмитрия Ивановича Менделеева.

Полупроводники: кремний, германий, селен

Полупроводники имеют дополнительную «дырочную» проводимость, в дополнение к электронной проводимости. Данный тип проводимости зависим от ряда факторов внешней среды, среди которых свет, температура, электрическое и магнитное поле.

В данных веществах имеются непрочные ковалентные связи. При воздействии одного из внешних факторов связь разрушается, после чего происходит образование свободных электронов. При этом, когда электрон отсоединяется, в составе ковалентной связи остается свободная «дырка». Свободные «дырки» притягивают соседние электроны, и так данное действие может производиться бесконечно.

Увеличить проводимость полупроводниковых веществ можно путем внесения в них различных примесей. Данный прием широко распространен в промышленной электронике: в диодах, транзисторах, тиристорах. Рассмотрим более подробно главные отличия проводников от полупроводников.

Основным отличием проводника от полупроводника является способность к проводимости электрического тока. У проводника она на порядок выше.

Когда поднимается значение температуры, проводимость полупроводников также возрастает; проводимость проводников при повышении становится меньше.

В чистых проводниках в нормальных условиях при прохождении тока высвобождается гораздо большее количество электронов, нежели в полупроводниках. При этом, добавление примесей снижает проводимость проводников, но увеличивает проводимость полупроводников.

Что представляют собой полупроводники?

Под полупроводниками понимаются химические элементы, обладающие ограниченной способностью передавать электрический ток. Это обусловлено небольшим количеством свободных электронов, формирующихся в их структуре при подключении электродов.

Типичными полупроводниками считаются такие химические элементы, как кремний — относящийся, в частности, к 4-й группе веществ по периодической системе Д. И. Менделеева. На внешней оболочке кремния располагается 4 электрона, классифицируемых как валентные. К иным чистым полупроводникам можно отнести, к примеру, германий.

Одна из главных характеристик полупроводников — удельное сопротивление. Оно может находиться в интервале от 10 в 4 до 10 в минус 5 степени Ом на метр. Для того чтобы понизить удельное сопротивление рассматриваемых элементов, в их состав могут быть включены легирующие примеси. Такие как, например, бор и мышьяк.

Если легирование полупроводников осуществляется посредством элементов 3-й группы по таблице Менделеева (в частности, при использовании бора), то полупроводник будет классифицирован как относящийся к p-типу. У элементов 3-й группы в оболочке присутствует 3 электрона. Это значит, что в структуре кристалла легированного полупроводника из-за недостающего электрона образуются «дырки», которые при подключении тока начинают движение в обратном направлении относительно положительного контакта (к которому, в свою очередь, стремятся электроны).

Реклама

Если легирование полупроводников осуществляется посредством элементов 5-й группы (например, при использовании мышьяка), то проводник будет относиться к n-типу. У элементов 5-й группы на внешней оболочке располагается 5 электронов. Поэтому при легировании полупроводника часть из них освобождается, вследствие чего элемент приобретает проводимость.

Можно отметить, что пограничная область, располагающаяся между полупроводниками p-типа и n-типа, обладает свойством проводить ток только при подключении электродов в определенном положении. Благодаря данной особенности функционируют различные электронные компоненты, в составе которых используются полупроводниковые вещества, — диоды, транзисторы.

Еще одно примечательное свойство рассматриваемых элементов — усиление проводимости по мере увеличения температуры.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Зонная теория

Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).

На изображении ниже показаны три вида материалов с их энергетическими уровнями:

Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия. В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.

У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.

У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.

Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток. Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники. Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.

Напоследок рекомендуем просмотреть полезное видео по теме:

Наверняка вы не знаете:

  • Причины потерь электроэнергии на больших расстояниях
  • Зависимость сопротивления проводника от температуры
  • Что такое диэлектрические потери
  • Что такое электрический заряд

Сопротивление проводников. Проводимость. Диэлектрики. Применение проводников и изоляторов. Полупроводники.
Физические вещества многообразны по своим электрическим свойствам. Наиболее обширные классы вещества составляют проводники и диэлектрики.
Проводники
Основная особенность проводников – наличие свободных носителей зарядов, которые участвуют в тепловом движении и могут перемещаться по всему объему вещества.
Как правило, к таким веществам относятся растворы солей, расплавы, вода (кроме дистиллированной), влажная почва, тело человека и, конечно же, металлы.
Металлы считаются наиболее хорошими проводниками электрического заряда.
Есть также очень хорошие проводники, которые не являются металлами.
Среди таких проводников лучшим примером является углерод.
Все проводники обладают такими свойствами, как сопротивление и проводимость. Ввиду того, что электрические заряды, сталкиваясь с атомами или ионами вещества, преодолевают некоторое сопротивление своему движению в электрическом поле, принято говорить, что проводники обладают электрическим сопротивлением (R).
Величина, обратная сопротивлению, называется проводимостью (G).
G = 1/ R
То есть, проводимость – это свойство или способность проводника проводить электрический ток.
Нужно понимать, что хорошие проводники представляют собой очень малое сопротивление потоку электрических зарядов и, соответственно, имеют высокую проводимость. Чем лучше проводник, тем больше его проводимость. Например, проводник из меди имеет большую проводимость, чем проводник из алюминия, а проводимость серебряного проводника выше, чем такого же проводника из меди.
Диэлектрики
В отличие от проводников, в диэлектриках при низких температурах нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.
К диэлектрикам относятся, в первую очередь, газы, которые проводят электрические заряды очень плохо. А также стекло, фарфор, керамика, резина, картон, сухая древесина, различные пластмассы и смолы.
Предметы, изготовленные из диэлектриков, называют изоляторами. Надо отметить, что диэлектрические свойства изоляторов во многом зависят от состояния окружающей среды. Так, в условиях повышенной влажности (вода является хорошим проводником) некоторые диэлектрики могут частично терять свои диэлектрические свойства.
О применении проводников и изоляторов
Как проводники, так и изоляторы широко применяются в технике для решения различных технических задач.
К примеру, все электрические провода в доме выполнены из металла (чаще всего медь или алюминий). А оболочка этих проводов или вилка, которая включается в розетку, обязательно выполняются из различных полимеров, которые являются хорошими изоляторами и не пропускают электрические заряды.
Нужно отметить, что понятия «проводник» или «изолятор» не отражают качественных характеристик: характеристики этих материалов в действительности находятся в широком диапазоне – от очень хорошего до очень плохого.
Серебро, золото, платина являются очень хорошими проводниками, но это дорогие металлы, поэтому они используются только там, где цена менее важна по сравнению с функцией изделия (космос, оборонка).
Медь и алюминий также являются хорошими проводниками и в то же время недорогими, что и предопределило их повсеместное применение.
Вольфрам и молибден, напротив, являются плохими проводниками и по этой причине не могут использоваться в электрических схемах (будут нарушать работу схемы), но высокое сопротивление этих металлов в сочетании с тугоплавкостью предопределило их применение в лампах накаливания и высокотемпературных нагревательных элементах.
Изоляторы также есть очень хорошие, просто хорошие и плохие. Связано это с тем, что в реальных диэлектриках также есть свободные электроны, хотя их очень мало. Появление свободных зарядов даже в изоляторах обусловлено тепловыми колебаниями электронов: под воздействием высокой температуры некоторым электронам все-таки удается оторваться от ядра и изоляционные свойства диэлектрика при этом ухудшаются. В некоторых диэлектриках свободных электронов больше и качество изоляции у них, соответственно, хуже. Достаточно сравнить, например, керамику и картон.
Самым лучшим изолятором является идеальный вакуум, но он практически не достижим на Земле. Абсолютно чистая вода также будет отличным изолятором, но кто-нибудь видел ее в реальности? А вода с наличием каких-либо примесей уже является достаточно хорошим проводником.
Критерием качества изолятора является соответствие его функциям, которые он должен выполнять в данной схеме. Если диэлектрические свойства материала таковы, что любая утечка через него ничтожно мала (не влияет на работу схемы), то такой материал считается хорошим изолятором.
Полупроводники
Существуют вещества, которые по своей проводимости занимают промежуточное место между проводниками и диэлектриками.
Такие вещества называют полупроводниками. Они отличаются от проводников сильной зависимостью проводимости электрических зарядов от температуры, а также от концентрации примесей и могут иметь свойства, как проводников, так и диэлектриков.
В отличие от металлических проводников, у которых с ростом температуры проводимость уменьшается, у полупроводников проводимость растет с увеличением температуры, а сопротивление, как величина обратная проводимости — уменьшается.
При низких температурах сопротивление полупроводников, как видно из рис. 1, стремится к бесконечности.
Это значит, что при температуре абсолютного нуля полупроводник не имеет свободных носителей в зоне проводимости и в отличие от проводников ведёт себя, как диэлектрик.
При увеличении температуры, а также при добавлении примесей (легировании) проводимость полупроводника растет и он приобретает свойства проводника.

Рис. 1. Зависимость сопротивлений проводников и полупроводников от температуры
Примерами классических полупроводников являются такие химические элементы, как кремний (Si) и германий (Ge). Более подробно об этих элементах читайте в статье «О проводимости полупроводников».
Статьи по теме: 1. Что такое электрический ток?
2. Постоянный и переменный ток
3. Взаимодействие электрических зарядов. Закон Кулона
4. Направление электрического тока
5. О скорости распространения электрического тока
6. Электрический ток в жидкостях
7. Проводимость в газах
8. Электрический ток в вакууме
9. О проводимости полупроводников
Внимание!
Всех интересующихся практической электротехникой приглашаю на страницы своего нового сайта «Электрика для дома». Сайт посвящен основам электротехники и электричества с акцентом на домашние электрические установки и процессы, в них происходящие.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *