Опубликовано

Принцип работы трансформатора

Принцип работы трансформатора

Трансформаторы бывают однофазные и многофазные, с одной, двумя или большим количеством обмоток. Рассмотрим схему и принцип работы трансформатора на примере простейшего однофазного трансформатора.

Кстати, в других статьях можно почитать, что такое фаза и ноль в электричестве.

Из чего состоит трансформатор? Во простейшем случае из одного металлического сердечника и двух обмоток. Обмотки электрически не связаны одна с другой и представляют собой изолированные провода.

Одна обмотка (ее называют первичной) подключается к источнику переменного тока. Вторая обмотка, называемая вторичной, подключается к конечному потребителю тока.

Когда трансформатор подключен к источнику переменного тока, в витках его первичной обмотки течет переменный ток величиной I1. При этом образуется магнитный поток Ф, который пронизывает обе обмотки и индуцирует в них ЭДС.

Бывает, что вторичная обмотка не находится под нагрузкой. Такой режимы работы трансформатора называется режимом холостого хода. Соответственно, если вторичная обмотка подключена к какому-либо потребителю, по ней течет ток I2, возникающий под действием ЭДС.

Величина ЭДС, возникающей в обмотках, напрямую зависит от числа витков каждой обмотки. Отношение ЭДС, индуцированных в первичной и вторичной обмотках, называется коэффициентом трансформации и равно отношению количества витков соответствующих обмоток.

Путем подбора числа витков на обмотках можно увеличивать или уменьшать напряжение на потребителе тока с вторичной обмотки.

Потери энергии в трансформаторе

Коэффициент полезного действия трансформаторов достаточно высок. Тем не менее, в обмотке и сердечнике происходят потери энергии, приводящие к тому, что температура при работе трансформатора повышается. Для трансформаторов небольшой мощности это не представляет проблемы, и все тепло уходит в окружающую среду – используется естественное воздушное охлаждение. Такие трансформаторы называют сухими.

В более мощных трансформаторах воздушного охлаждения оказывается недостаточно, и применяется охлаждение маслом. В этом случае трансформатор помещается в бак с минеральным маслом, через которое тепло передается стенкам бака и рассеивается в окружающую среду. В трансформаторах высоких мощностей дополнительно применяются выхлопные трубы – если масло закипает, образовавшимся газам нужен выход.

Конечно, трансформаторы не так просты, как может показаться на первый взгляд — ведь мы рассмотрели принцип действия трансформатора кратко. Контрольная по электротехнике с задачами на расчет трансформатора внезапно может стать настоящей проблемой. Специальный студенческий сервис всегда готов оказать помощь в решении любых проблем с учебой! Обращайтесь в Zaochnik и учитесь легко!

Трансформатор напряжения работает в режиме, близком к холостому ходу.

Холостым ходомтрансформатора называется такой режим его работы, при котором к первичной обмотке подведено синусоидальное напряжение u1, а вторичная обмотка разомкнута и ток в ней равен нулю.

Трансформатор тока — на режим, близкий к короткому замыканию.

Режимом короткого замыкания трансформатора называется такой режим, когда выводы вторичной обмотки замкнуты токопроводом с сопротивлением, равным нулю (ZH = 0). Короткое замыкание трансформатора в условиях эксплуатации создает аварийный режим, так как вторичный ток, а следовательно, и первичный увеличиваются в несколько десятков раз по сравнению с номинальным.

Условия параллельной работы трансформаторов :

1. Самое важное условие параллельной работы – сфазированность трансформаторов, в противном случае произойдет короткое замыкание. Фазировка выполняется при помощи цепей вторичного напряжения. Фазировка трансформатора обуславливает согласование фаз всех рабочих элементов электрической цепи со стороны высокого и низкого напряжения.

2. Напряжения на первичных и вторичных обмотках обоих трансформаторов должны иметь равное значение. Напряжение трансформаторов должно соответствовать классу изоляции. Из этого следует, что коэффициенты трансформации (Ктр) также должны быть равными, их различие не должно быть выше +-0.5%.. разница Ктр или даже несовпадение состояния РПН или ПБВ соответствующего положения отпаек, способствует возникновению результирующего напряжения, которое появляется во вторичной обмотке.

3. Напряжения короткого замыкания обоих трансформаторов должны быть также равны, это требование вытекает из того, что чем выше напряжение к. з. тем выше значение сопротивления обмотки, а значит, трансформатор с малым значением напряжения (Uк.з.) будет работать с постоянным перегрузом из-за потребления высокой нагрузки, максимальная разница в отношении Uк.з не должна превышать 10%.

4. Группы соединений обмоток должны соответствовать друг другу и быть одинаковыми. Разные группы соединений влекут сдвиг фазы, что способствует возникновению уравнительных токов.

5. Мощность обоих трансформаторов не должна быть различной более чем в 3 раза, если это условие не выдержано трансформатор с меньшей мощностью будет перегружен.

Виды построения схем электроснабжения. Какие виды опор используются при сооружении ВЛ?

Радиальная схема — электроснабжение осуществляется линиями, не имеющими распределения энергии по их длинам (рис. 1, а). Такие линии называют радиальными. В электроснабжении городов радиальные линии называют питающими. Линии W1—W4 на рис. 1, а — радиальные. Питание потребителя П1 на рис. 1, а производится двумя линиями W1 и W2. Такая схема называется радиальной с резервированием. С целью повышения надежности, линии W1 и W2 приемников I категории подключают к разным НИП.

Рис. 1. Схемы электроснабжения: а— радиальная; б— магистральная; в— смешанная

Магистральная схема — линии, питающие потребителей (приемники), имеют распределение энергии по длине (рис. 1, б). Такие линии называют магистральными (линия W). При магистральном подключении ТП (на проходной ТП) целесообразно на некоторых из них на питающих или отходящих линиях использовать силовые выключатели с защитами, с целью локализации поврежденного участка сети и ограничения числа отключенных при этом ТП.

Смешанная схема — электроснабжение осуществляется радиальными и магистральными линиями. На рис. 1, в линия W1 — радиальная, W2 — магистральная, т. е. схема является смешанной.

Магистральные линии могут быть с односторонним или с двухсторонним питанием. Одиночную магистральную линию с двухсторонним питанием в электроснабжении городов называют петлевой, а сети с такими линиями — петлевыми.

Радиальные схемы бывают одно- и двухступенчатыми.

В одноступенчатой радиальной схеме потребители (приемники) непосредственно связаны с ЦП, как показано на рис. 1, а.

В двухступенчатой радиальной схеме между ЦП и потребителями (приемниками) имеются дополнительные элементы — РП (рис. 2). Питание потребителей П1 и П2 производится по одноступенчатой, а ПЗ—П5 — по двухступенчатой схеме через РП. РП питается по двум радиальным линиям W2 и W3, т. е. выполнена радиальная с резервированием схема питания приемников ПЗ—П5.

Достоинство радиальных схем: максимальная простота; аварийное отключение радиальной линии не отражается на электроснабжении остальных потребителей.

Рис. 2. Двухступенчатая радиальная схема

Недостаток: большой расход кабельной продукции обусловливает высокую стоимость системы. Кроме того, при одиночных радиальных линиях невысока надежность электроснабжения.

Магистральные схемы делят на следующие группы:

одиночные или однолучевые (с одно- и двусторонним питанием);

многолучевые (двух-, трехлучевые и др.).

Магистрали могут дополняться резервными элементами. В зависимости от объема резервирования различают схемы без резервирования, с частичным резервированием и с полным резервированием. Одиночная магистраль без резервирования может применяться для электроснабжения приемников III категории, если перерыв питания на отыскание, отключение и восстановление поврежденного участка не превышает 1 суток. В противном случае применяют резервирование. Одиночная магистраль с двухсторонним питанием {петлевая схема) применяется также для приемников III категории. К указанной категории в ГРС относятся потребители с суммарной нагрузкой не выше 400 кВА.

Среди многолучевых магистралей наибольшее распространение получили двухлучевые.

Магистральные схемы имеют следующие достоинства:

— лучшая загрузка линий, т. к. к каждой линии подключена не одна, а группа ТП;

— меньший расход кабелей;

— на ЦП и РП нужно устанавливать меньшее количество выключателей.

Недостатки одиночных магистралей заключаются в трудностях при отыскании места повреждения магистрали и в более низкой надежности электроснабжения по сравнению с радиальной схемой. Последнее объясняется тем, что на надежность работы магистрали влияют показатели надежности стороны ВН ТП, включая силовые трансформаторы. Применение двухстороннего питания одиночных магистралей (петлевая схема) не решает проблемы обеспечения надежности и решения трудностей при отыскании места повреждения. Двойные магистрали с двухсторонним питанием (двухлучевые схемы) могут обеспечить достаточную надежность электроснабжения всех категорий электроприемников. Это обусловило их широкое распространение в электроснабжении городов.

С целью облегчения поиска поврежденных элементов в настоящее время широко используют указатели короткого замыкания, срабатывающие при прохождении по ним токов КЗ.

Сопоставив перечисленные схемы электроснабжения, можно сделать следующие выводы.

1. Наиболее простыми и отвечающими требованиям III категории надежности являются сети, выполненные по радиальной схеме без резервирования и с одиночными магистралями.

2. Требованиям II категории надежности отвечают широко распространенные магистральные многолучевые схемы, чаще всего двухлучевые.

3. Электроснабжение приемников I категории удобно производить с помощью радиальных схем с резервированием, а также двухлучевых схем. Во всех случаях питания приемников I категории должен применяться АВР.

Виды и типы опор воздушных линий электропередачи

Принцип работы

Работа трансформаторного устройства основана на явлении электромагнитной индукции, состоящей в следующем: при изменении параметров магнитного поля, пересекающего проводник, в последнем возникает ЭДС (электродвижущая сила). Проводник в трансформаторе присутствует в форме катушки или обмотки, и общая ЭДС равна сумме ЭДС каждого витка.

Для нормальной работы требуется исключить электрический контакт между витками, потому используют провод в изолирующей оболочке. Эту катушку называют вторичной.

Магнитное поле, необходимое для генерации во вторичной катушке ЭДС, создается другой катушкой. Она подключается к источнику тока и называется первичной. Работа первичной катушки основана на том факте, что при протекании через проводник тока, вокруг него формируется электромагнитное поле, а если он смотан в катушку, оно усиливается.

Как работает трансформатор

При протекании через катушку постоянного тока параметры электромагнитного поля не меняются и оно неспособно вызвать ЭДС во вторичной катушке. Поэтому трансформаторы работают только с переменным напряжением.

На характер преобразования напряжения влияет соотношение количества витков в обмотках – первичной и вторичной. Его обозначают «Кт» – коэффициент трансформации. Действует закон:

Кт = W1 / W2 = U1 / U2,

где,

  • W1 и W2 — количество витков в первичной и вторичной обмотках;
  • U1 и U2 — напряжение на их выводах.

Следовательно, если в первичной катушке витков больше, то напряжение на выводах вторичной ниже. Такой аппарат называют понижающим, Кт у него больше единицы. Если витков больше во вторичной катушке — трансформатор напряжение повышает и называется повышающим. Его Кт меньше единицы.

Большой силовой трансформатор

Если пренебречь потерями (идеальный трансформатор), то из закона сохранения энергии следует:

P1 = P2,

где Р1 и Р2 — мощность тока в обмотках.

Поскольку P = U * I, получим:

  • U1 * I1 = U2 * I2;
  • I1 = I2 * (U2 / U1) = I2 / Кт.

Это означает:

  • в первичной катушке понижающего устройства (Кт > 1) протекает ток меньшей силы, чем в цепи вторичной;
  • с повышающими трансформаторами (Кт < 1) все наоборот: сила тока в первичной катушке выше, чем в цепи вторичной.

Данное обстоятельство учитывают при подборе сечения проводов для обмоток аппаратов.

Конструкция

Трансформаторные обмотки надевают на магнитопровод — деталь из ферромагнитной, трансформаторной или иной магнитомягкой стали. Он служит проводником электромагнитного поля от первичной катушки ко вторичной.

Под действием переменного магнитного поля в магнитопроводе также генерируются токи — они называются вихревыми. Эти токи приводят к потерям энергии и нагреву магнитопровода. Последний, с целью свести данное явление к минимуму, набирают из множества изолированных друг от друга пластин.

На магнитопроводе катушки располагают двояко:

  • рядом;
  • наматывают одну поверх другой.

Обмотки для микротрансформаторов изготавливают из фольги толщиной 20 – 30 мкм. Ее поверхность в результате окисления становится диэлектриком и играет роль изоляции.

Конструкция трансформатора

На практике добиться соотношения Р1 = Р2 невозможно из-за потерь трех видов:

  1. рассеивание магнитного поля;
  2. нагрев проводов и магнитопровода;
  3. гистерезис.

Потери на гистерезис — это затраты энергии на перемагничивание магнитопровода. Направление силовых линий электромагнитного поля постоянно меняется. Каждый раз приходится преодолевать сопротивление диполей в структуре магнитопровода, выстроившихся определенным образом в предыдущей фазе.

Потери на гистерезис стремятся уменьшить, применяя разные конструкции магнитопроводов.

Итак, в реальности величины Р1 и Р2 отличаются и соотношение Р2 / Р1 называют КПД устройства. Для его измерения используются следующие режимы работы трансформатора:

  • холостого хода;
  • короткозамкнутый;
  • с нагрузкой.

В некоторых разновидностях трансформаторов, работающих с напряжением высокой частоты, магнитопровод отсутствует.

Режим холостого хода

Первичная обмотка подключена к источнику тока, а цепь вторичной разомкнута. При таком подключении в катушке течет ток холостого хода, в основном представляющий реактивный ток намагничивания.

Такой режим позволяет определить:

  • КПД устройства;
  • коэффициент трансформации;
  • потери в магнитопроводе (на языке профессионалов — потери в стали).

Схема трансформатора в режиме холостого хода

Короткозамкнутый режим

Выводы вторичной обмотки замыкают без нагрузки (накоротко), так что ток в цепи ограничивается лишь ее сопротивлением. На контакты первичной подают такое напряжение, чтобы ток в цепи вторичной обмотки не превышал номинального.

Такое подключение позволяет определить потери на нагрев обмоток (потери в меди). Это необходимо при реализации схем с применением вместо реального трансформатора активного сопротивления.

Режим с нагрузкой

В этом состоянии к выводам вторичной обмотки подключен потребитель.

Охлаждение

В процессе работы трансформатор греется.

Применяют три способа охлаждения:

  1. естественное: для маломощных моделей;
  2. принудительное воздушное (обдув вентилятором): модели средней мощности;
  3. мощные трансформаторы охлаждаются при помощи жидкости (в основном используют масло).

Прибор с масляным охлаждением

Виды трансформаторов

Аппараты классифицируются по назначению, типу магнитопровода и мощности.

Силовые трансформаторы

Наиболее многочисленная группа. К ней относятся все трансформаторы, работающие в энергосети.

Автотрансформатор

У этой разновидности между первичной и вторичной обмотками имеется электрический контакт. При намотке провода делают несколько выводов — при переключении между ними задействуется разное число витков, отчего меняется коэффициент трансформации.

Достоинства автотрансформатора:

  • Повышенный КПД. Объясняется тем, что преобразованию подвергается только часть мощности. Это особенно важно при незначительной разнице между напряжением на входе и выходе.
  • Низкая стоимость. Это обусловлено меньшим расходом стали и меди (автотрансформатор имеет компактные размеры).

Эти устройства выгодно применять в сетях напряжением 110 кВ и более с эффективным заземлением при Кт не выше 3-4.

Трансформатор тока

Используется для снижения силы тока в подключенной к источнику питания первичной обмотке. Устройство находит применение в защитных, измерительных, сигнальных и управляющих системах. Преимущество в сравнении с шунтовыми схемами измерения, состоит в наличии гальванической развязки (отсутствие электроконтакта между обмотками).

Первичная катушка включается в цепь переменного тока – исследуемую или контролируемую – с нагрузкой последовательно. К выводам вторичной обмотки подключают исполнительное индикаторное устройство, к примеру, реле, или прибор измерения.

Трансформатор тока

Допустимое сопротивление в цепи вторичной катушки ограничено мизерными значениями — почти короткое замыкание. У большинства токовых трансформаторов величина номинального тока в этой катушке составляет 1 или 5 А. При размыкании цепи в ней формируется высокое напряжение, способное пробить изоляцию и повредить подключенные приборы.

Импульсный трансформатор

Работает с короткими импульсами, продолжительность которых измеряется десятками микросекунд. Форма импульса практически не искажается. В основном используются в видеосистемах.

Сварочный трансформатор

Данное устройство:

  • понижает напряжение;
  • рассчитано на номинальный ток в цепи вторичной обмотки до тысяч ампер.

Регулировать сварочный ток можно изменением числа витков обмоток, задействованных в процессе (они имеют по нескольку выводов). При этом изменяется величина индуктивного сопротивления или вторичное напряжение холостого хода. Посредством дополнительных выводов обмотки разбиты на секции, потому регулировка сварочного тока осуществляется ступенчато.

Габариты трансформатора во многом зависят от частоты переменного тока. Чем она выше, тем более компактным получится устройство.

Сварочный трансформатор ТДМ 70-460

На этом принципе основано устройство современных инверторных сварочных аппаратов. В них переменный ток перед подачей на трансформатор подвергается обработке:

  • выпрямляется посредством диодного моста;
  • в инверторе — управляемом микропроцессором электронном узле с быстро переключающимися ключевыми транзисторами — снова становится переменным, но уже с частотой 60 – 80 кГц.

Потому эти сварочные аппараты такие легкие и небольшие.

Также устроены блоки питания импульсного типа, например, в ПК.

Разделительный трансформатор

В этом устройстве обязательно присутствует гальваническая развязка (нет электрического контакта между первичной и вторичной обмотками), а Кт равен единице. То есть разделительный трансформатор напряжение оставляет неизменным. Он необходим для повышения безопасности подключения.

Прикосновение к токоведущим элементам оборудования, подключенного к сети через такой трансформатор, к сильному удару током не приведет.

В быту такой способ подключения электроприборов уместен во влажных помещениях— в ванных и пр.

Кроме силовых трансформаторов, существуют сигнальные разделительные. Они устанавливаются в электроцепи для гальванической развязки.

Магнитопроводы

Бывают трех видов:

  1. Стержневые. Выполнены в виде стержня ступенчатого сечения. Характеристики оставляют желать лучшего, но зато просты в исполнении.
  2. Броневые. Лучше стержневых проводят магнитное поле и вдобавок защищают обмотки от механических воздействий. Недостаток: высокая стоимость (требуется много стали).
  3. Тороидальные. Наиболее эффективная разновидность: создают однородное сконцентрированное магнитное поле, чем способствуют уменьшению потерь. Трансформаторы с тороидальным магнитопроводом имеют наибольший КПД, но они дороги из-за сложности изготовления.

Мощность

Мощность трансформатора принято обозначать в вольт-амперах (ВА). По данному признаку устройства классифицируются так:

  • маломощные: менее 100 ВА;
  • средней мощности: несколько сотен ВА;

Существуют установки большой мощности, измеряемой в тысячах ВА.

Трансформаторы отличаются назначением и характеристиками, но принцип действия у них одинаков: переменное магнитное поле, генерируемое одной обмоткой, возбуждает во второй ЭДС, величина которого зависит от числа витков.

Необходимость в преобразовании напряжения возникает очень часто, потому трансформаторы получили самое широкое распространение. Данное устройство можно изготовить самостоятельно.

Требования сети

Включение трансформаторов на параллельную работу вызвано определенными особенностями эксплуатации электроустановок. Представленный подход позволяет решить проблемы электроснабжения.

При параллельном подключении силовых трансформаторов удается избежать увеличения токов основного устройства. Система менее подвержена перегрузкам. В процессе параллельного подключения обмоток трансформатора уменьшается показатель сбоев в работе электросети. Вероятность, что не будут работать сразу два трансформаторных устройства, крайне мала.

При эксплуатации силового оборудования высокой мощности необходимо обеспечить достаточное пространство (в высоту) для установки агрегата. В небольшом помещении допускается параллельная работа трансформаторов, согласно ПУЭ. На территории одной электроустановки со стандартными размерами пространства возможно использовать необходимое количество силовой аппаратуры. Для увеличения продуктивности, безопасности работающих от разных источников агрегатов, потребуется правильно создать параллельное соединение обмоток.

Условия

Существуют определенные условия параллельной работы трансформаторов. Всего установлено 5 пунктов. Включенные приборы работают правильно при следующих условиях:

  1. Фазировка. Выполнение этого условия трансформаторами является обязательным. Иначе будет наблюдаться короткое замыкание. Токи вторичных цепей позволяют выполнить фазировку. Фазы соединений согласовываются со стороны низкого, высокого напряжения.
  2. Напряжение на обмотках вторичных и первичных катушек при соединении должно быть разным. Это условие выполняется с соблюдением особенностей изоляции. Коэффициент трансформации всех элементов системы должен быть идентичным. Соединить устройство допускается, если отклонение показателя не превышает 0,5 %.
  3. Напряжение короткого замыкания равно для всех агрегатов. Это способствует выполнению обмотками установленных функций. Сопротивление контура возрастает при высоком напряжении короткого замыкания. Увеличивая его уровень для маломощного агрегата, можно получить перегрузку. Для нормальных условий функционирования системы при выполнении стандартов отклонение между показателями короткого замыкания устройств не превышает 10%.
  4. Включить параллельным соединением допускается одинаковые обмотки, соответствующие друг другу. При несоблюдении этого условия работающими приборами вырабатываются уравнительные токи. Наблюдается сдвиг фазы.
  5. Мощность аппаратуры не должна отличаться в 3 раза. Это является важным условием правильной работы системы. В противном случае мощный прибор увеличивает нагрузку на следующие приборы. Маломощные агрегаты будут перегружены. Соединять подобные устройства запрещается правилами безопасности.

Следуя перечисленным условиям, обеспечивается стабильная, эффективная работа силового оборудования. Безопасность и надежность функционирования системы повышается.

Выполнение фазировки

Чтобы избежать появления короткого замыкания, на низшем выводе напряжения проводится фазировка. Если этот показатель в указанной точке не превышает 1000 В, применяется вольтметр. Его настраивают на соответствующий уровень напряжения.

Фазируемые обмотки соединяют. Это позволит получить замкнутый контур. Обмотки могут иметь заземленную нейтраль или выпускаться без нее. В первом случае контур замыкается через землю. Сопротивление между выводами замеряется. Результат сопоставляется с указанными производителем значениями.

Если нейтраль в конструкции не предусмотрена, потребуется ставить последовательно перемычку между соответствующими выводами двух трансформаторов. Между ними замеряют напряжение. Чтобы обеспечить безопасную работу агрегатов, соединяют те выводы, между которыми при замере не было напряжения.

Рассмотрев особенности параллельного соединения трансформаторных устройств, а также условия и рекомендации по проведению этого процесса, можно обеспечить стабильную и безопасную работу системы. Это предоставляет массу преимуществ в процессе энергоснабжения потребителей электричеством.

Экономически целесообразный режим работы трансформаторов

На подстанциях, от которых питаются потребители первой и второй категории, устанавливаются два трансформатора. Они могут работать в различных режимах: режим раздельной работы и режим параллельной работы.

При раздельном режиме каждый из трансформаторов работает на свою выделенную нагрузку, секционный выключатель (СВ) на стороне НН отключен.

Режим параллельной работы – выключатели на ВН и НН включены, трансформаторы работают на общую нагрузку.

При раздельной работе уменьшается ток КЗ. Недостаток – неодинаковая загрузка трансформаторов.

При параллельной работе – наоборот: загрузка трансформаторов пропорциональна их мощности.

С экономической точки зрения наиболее рациональным является параллельный режим работы, особенно если они однотипные. Трансформаторы разных типов и мощностей не всегда можно включать на параллельную работу. Для параллельной работы необходимо выполнение нескольких условий:

1). Соотношение мощностей не более 1:3

2). Группы соединений обмоток должны быть одинаковыми

3). Напряжение КЗ должно различаться не более чем на 10%

4). Напряжения ответвлений РПН должны отличаться не более чем на 0,5%

Для выявления экономически целесообразного режима работы трансформаторов построим зависимости потерь активной мощности от передаваемой мощности:

Если мощность, проходящая через тр-р будет находиться в интервале от 0 до , минимум потерь активной мощности будет иметь место при работе одного трансформатора.

Если , то наименьшие потери при работе двух трансформаторов.

Если , то наиболее выгодна работа трех трансформаторов.

Для одинаковых трансформаторов:

Для двухтрансформаторных подстанций:

Если в режиме минимальных нагрузок мощность подстанции будет меньше или равна , то для уменьшения потерь мощности целесообразно отключить один из параллельно работающих трансформаторов.

При этом если от подстанции питаются потребители первой категории, то при отключении одного из трансформаторов должно быть предусмотрено АВР.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *