Опубликовано

Преимущества постоянного тока

книги

Глава 43. Электромеханический полуТРЭГ шестидесятых.

Раздел 1. От автора.

В этой главе речь пойдет об очень интересной разработке шестидесятых годов 20 века со странным названием РПЭДЯ (Русский Параметрический Электрический Двигатель Яловеги). Он был реализован и испытан как за бугром в 90е годы, так и в России в Тюменской области.

Автор – Яловега Н.В. в силу ОПРЕДЕЛЕННЫХ (я думаю экономико-политических) причин провел его комплексное исследование где-то в Австрии с участием забугорных коллег.

Это было время ПОЛНОГО РАЗБРОДА в умах россиян. Схватка ПАТРИОТИЗМА и ХИТРОЖОПОСТИ. Кто победил ВЫ ЗНАЕТЕ!

Об РПЭДЯ я узнал с месяц назад из письма заинтересованного человека.

Выражаю ему общелюдно свою благодарность.

Так вот, РПЭДЯ достоин самого, что ни на есть внимательнейшего отношения к себе!

Прочтите… Вот ссылка ……http://kopen.narod.ru/product_1.html

Раздел 2. РПЭДЯ-ТРЭГ.

Итак, что мы имеем?

Имеем электродвигатель оригинальной конструкции, целиком базирующейся на промышленном железе. При этом ОН имеет совершенно УДИВИТЕЛЬНЕЙШИЕ параметры. Правда, в материале о техническом КПД сказано только ПОДТЕКСТОМ, в виде ряда обобщающих технических характеристик.

Посмотрите на Рис. 1. Это электрическая схема РПЭДЯ.

Рис. 1. Электрическая схема включения обмоток РПЭДЯ.

Она ОДИН В ОДИН повторяет схему включения первичного контура СУПЕРТРЭГ (ЛИДЕРА) – см. Рис. 2. Единственное ОТЛИЧИЕ – свободно «висящий» НУЛЬ. В РПЭДЯ можно обойтись БЕЗ НЕГО.

В СУПЕРТРЭГ (в дальнейших его модификациях) нуль тоже можно исключить!

Рис. 2. Электрическая схема включения первичного контура СУПЕРТРЭГ (ЛИДЕРА).

Принципиальная разница лишь в том, что РПЭДЯ тут же НА МЕСТЕ трансформирует энергию вращения СИЛ магнитной природы В МЕХАНИКУ. А СУПЕРТРЭГ – перенаправляет электромагнитную их ПРОЕКЦИЮ в первичный контур КОНТРЛИДЕРА. Тем самым создает условия для трансформации ПРОЕКЦИИ в ЭЛЕКТРОЭНЕРГИЮ!

Но! У СУПЕРТРЭГ существует перспектива МНОГОФАЗНОСТИ (больше 6). У РПЭДЯ ее нет. А если и есть, то это уже обычный многофазный электромотор с УДВОЕНИЕМ фазности.

Т.е. ПОЛОВИНКА СУПЕРТРЭГА в ЭЛЕКТРОМЕХАНИЧЕСКОМ варианте!

А вот и энергетические параметры РПЭДЯ в словесной форме: Цит.

Энергосберегающие двигатели, типа РПЭДЯ созданы для замены трехфазных асинхронных двигателей (АД) и двигателей постоянного тока. РПЭДЯ, при выполнении аналогичной с трехфазными АД работы, потребляют в 3 — 4 раза меньше, а в отдельных случаях в 5 — 6 раз меньше электроэнергии.

Я их СПЕЦИАЛЬНО привел. Это фрагмент сайта директора НПП ООО «КОПЭН» Сергея Николаевича Яловеги.

Ниже ЭТИ ЖЕ ПАРАМЕТРЫ! Только в виде ГРАФИКОВ! В виде СКРЫТОЙ ИНФОРМАЦИИ! См. Рис. 3. и Рис. 4.

Рис. 3. Сравнительные «Косинусы ФИ» РПЭДЯ и обычных ЭД в зависимости от степени нагрузки.

Рис. 4. Сравнительные «КПД» РПЭДЯ и обычных ЭД в зависимости от питающего напряжения.

Посмотрите внимательно на Рис. 3 и 4. Эти графики показывают нам почти НИЧЕГО НЕ ГОВОРЯЩИЕ величины. Точнее – ДЛЯ узкоспециализированных СПЕЦОВ – это ОЧЕНЬ ВАЖНЫЕ данные. Но для нас – простолюдинов – это так себе – наукообразные отвлеченные данные!

Нам бы что-нибудь попроще: НАПРИМЕР, график ПОТРЕБЛЯЕМОЙ мощности в зависимости от нагрузки, и РЯДОМ с ним график семейства кривых ВЫХОДНОЙ мощности в зависимости от питающего напряжения (а еще лучше – в зависимости от потребляемой мощности). Тогда можно ГРАФИЧЕСКИ или РАСЧЕТНЫМ путем вычислить НАСТОЯЩИЙ КПД. Что бы он РЕАЛЬНО отражал ПРОСТУЮ до ВЗВИЗГА формулу КПД: КПД – есть отношение ВЫХОДНОЙ мощности К ВХОДНОЙ (в у.е. или в процентах). Или, что более корректно – отношение ПОЛЕЗНОЙ работы к ЗАТРАЧЕННОЙ энергии.

После ПЕРВИЧНОГО быстрого анализа приведенных данных Я НИКАК НЕ МОГУ СООБРАЗИТЬ, как, каким образом состыковать фразу «потребляют в 3 — 4 раза меньше, а в отдельных случаях в 5 — 6 раз меньше электроэнергии», с тем, ЧТО ВИЖУ на графиках.

Тем более, из этих противоречивых данных я НЕ МОГУ ПОНЯТЬ – ЭКВИВАЛЕНТНЫ ИЛИ НЕТ ВАТТЫ (киловатты) МЕХАНИЧЕСКОЙ мощности и ЭЛЕКТРИЧЕСКОЙ, для АВТОРА этих ДОКУМЕНТОВ?

Вроде бы ВСЯ НАУКА до сих пор говорит, что они ЭКВИВАЛЕНТНЫ!

ЧТО ЭТО? Заигрывание С НАМИ? Может быть существуют какие то другие алгоритмы вычисления КПД, по которым ВСЕГДА будет получаться величина которая нам нужна? Только мы «не умеем» ими пользоваться?

Раздел 3. Открытые вопросы…

Я НЕ СОБИРАЮСЬ опровергать ПРАКТИЧЕСКИЕ данные, полученные Яловегой Н.В. и опубликованные Яловегой С.Н. Они добыты нелегким трудом.

Но вопрос я поставил.

Я точно знаю, что если затратив 100 ватт электрической мощности, вы получите хотя бы 100,1 (!!!) ватт механической – то это уже СВЕРХЪЕДИНИЧНОСТЬ в самом откровенном виде, т.е. ПЕРПЕТУУМ МОБИЛЕ!

Как его воплотить В МЕТАЛЛ – это ПРОЗА для КОНСТРУКТОРСКОЙ мысли. И вопрос этот НЕ ПРИНЦИПИАЛЕН, т.к. легко решаем (естественно ПРИ НАЛИЧИИ соответствующего оборудования и материалов) В РАБОЧЕМ ПОРЯДКЕ.

Здесь же мы ИМЕЕМ УСЛОВНО — на 500 ватт затрат КИЛОВАТТЫ выходной мощности (АБСТРАКТНЫЕ цифры для примера)! Даже С УЧЕТОМ ВСЕХ «косинусов ФИ» и относительных КПД!

Это вопрос УЖЕ К ВАМ. Ответьте на него ДЛЯ СЕБЯ, и вам МНОГОЕ в теперешней научной парадигме станет ясным.

И еще: Что мешает в таком случае ЗАМКНУТЬ РПЭДЯ механически через обычный генератор НА СЕБЯ, чтобы получить вечное вращение, и возможно С ГЕНЕРАЦИЕЙ дополнительной энергии?

Делаю подсказку: Прочтите внимательно весь сайт ООО «Копэн». Вы поймете, что в этих материалах РПЭДЯ характеризуется ДОЛГОВРЕМЕННЫМ «КПД». Т.е. настоящий КПД подменен ЭКОНОМИЧЕСКИМ КПД. При этом технические характеристики спрятались за такими понятиями как УДОБСТВО, НАДЕЖНОСТЬ, ПРЕЕМИСТОСТЬ и т.д. и т.п.

А НАСТОЯЩИЙ КПД, как я понял НЕ БОЛЬШЕ 100%. Поэтому замкнуть РПЭДЯ генератором на себя НЕВОЗМОЖНО!

Но КПД РПЭДЯ на всех режимах БЛИЗОК к 100%.

В принципе, это тоже ОЧЕНЬ ВАЖНО, т.к. дает реальную экономию топлива до десятка РАЗ!

Так, что РПЭДЯ – это первая ласточка предвосхитившая ТРЭГ. Только ласточка взлетевшая и тут же приземлившаяся. И никто о ней особо не знает. Не выгодна она хитрожопым. Представляете себе или нет, если бы все промышленное оборудование России было укомплектовано двигателями РПЭДЯ? Какая бы была общая экономия топлива и электроэнергии…

Однако хочу заметить, что такого рода эквилибристика вокруг понятий ТЕХНИЧЕСКИЙ КПД и ЭКОНОМИЧЕСКИЙ КПД, которая сквозит в материале об РПЭДЯ сильно смахивает на ОТПИАРИВАНИЕ.

И в конечном итоге создает нездоровую обстановку около технической сути принципа РПЭДЯ.

Источники постоянного тока и его применение.

Постоянный ток можно легко получить вследствие определённой химической реакции, если смешать нужные химические элементы. Именно таким образом его когда-то и открыли учёные.

Но время не стоит на месте, и сейчас, в нынешнем мире существует очень много источником постоянного тока. И он очень широко применяется как в быту, так же и на производстве.

Для начала давайте рассмотрим, какие бывают источники постоянного тока в домашних условиях.

А это реально все электрические приборы, у которых есть блоки питания: компьютер, зарядка к мобильному телефону, DVD – плеер, TV – тюнер, телевизор и много другое. Просто в данных случаях постоянный ток получают из переменного тока, при помощи специальных трансформаторов, стабилизаторов, фильтров и так далее.

Как вы уже поняли в этих же приборах он и используются.

А самыми непосредственными источниками постоянного тока являются все накопители тока. Простыми словами это может быть обычная пальчиковая батарейка, батарея на мобильном телефоне, аккумулятор в автомобиле.

На предприятиях, где нужны очень большие мощности, в качестве источника постоянного тока могут использоваться специальные машины – генераторы. Или так же само, как и в домашних условиях, могут получать постоянный ток из переменного тока.

Ещё постоянный ток широко применяется в транспортной сфере. Не могу не сказать об знаменитых электромобилях, а ведь они работают на постоянном токе.

Так же и много другой техники: трамваи, троллейбусы, краны, экскаваторы, самосвалы и многие другие.

И в качестве закрепления материала советую вам посмотреть видео.

На этом у меня всё. Надеюсь статья была вам полезной. Нажимайте на кнопки социальных сетей и подписывайтесь на обновление. Пока.

С уважением Александр!

При всех несомненных достоинствах переменного тока (простота производства и распространения, надежность и эффективность используемого самого разнообразного оборудования), есть определенные сферы, где постоянный ток прочно удерживает свои лидирующие позиции.

Прежде всего, это относится к электроприводам. Двигатели на постоянном токе позволяют формировать самые разнообразные электротехнические характеристики, которые недоступны при использовании переменного тока.

Их использование имеет главное преимущество в том, что обеспечивает достаточно широкий диапазон регулирования при относительной простоте его осуществления. Например, можно обеспечить необходимую скорость вращения ротора практически под любой нагрузкой.

Именно поэтому электродвигатели постоянного тока используются в качестве главных силовых агрегатов таких транспортных средств, как поезда метро, троллейбусы и трамваи.

Сегодня наиболее эффективными способами управления приводами на постоянном токе являются системы, предусматривающие тиристорно-импульсное регулирование.

Также есть определенная техника и технологии, которые предусматривают использование только постоянного тока. Это, прежде всего, электрохимические установки, использующие электролиз, специальные плавильные печи, а также различные автономные системы, использующие в качестве источника электроэнергии постоянный ток. В последнем случае диапазон применения достаточно велик: от освещения шахт до обеспечения жизнедеятельности космических станций на орбите.


В некоторых случаях использование постоянного тока является даже предпочтительным. В качестве примера можно привести следующие области его применения:

— доставка электроэнергии между источником и потребителем, которые находятся на достаточно удаленном друг от друга месте без использования промежуточного оборудования;

— возможность увеличения мощности уже имеющейся сети в тех случаях, когда прокладка дополнительных линий затруднена или не является экономически оправданной;

— передача электроэнергии между системами, которые не синхронизированы между собой;

— стабилизация стандартных электросетей переменного тока;

— снижение потерь от коронных разрядов.

Весьма характерным примером использования постоянного тока являются подводные кабели, так как их большая длина при использовании переменного тока имеет слишком высокую емкостную составляющую. Это вызывает дополнительные потери при транспортировке.


Бортовая система электроснабжения летательных аппаратов

Бортовая система электроснабжения летательных аппаратов (бортовая СЭС ЛА) — система электроснабжения, предназначенная для обеспечения бортового электрооборудования летательного аппарата электроэнергией требуемого качества. Системой электроснабжения принято называть совокупность устройств для производства и распределения электроэнергии. Начиная с 20-х годов прошлого века, на самолётах стали использоваться генераторы постоянного тока на 8, затем — на 12, и, наконец, на 27 вольт.

Для питания бортового оборудования и систем ЛА в настоящее время применяется электроэнергия постоянного тока напряжением 28 вольт, переменного однофазного или трёхфазного с нейтралью тока с напряжением 200/115 вольт, частотой 400 Гц, переменного трёхфазного без нейтрали тока линейным напряжением 36 вольт, 400 герц. Суммарная мощность генераторов на борту может составлять от 20 кВт для небольших самолётов или вертолётов до 600 и более кВт для тяжёлых ЛА.

В состав бортовой СЭС входят источники тока, аппаратура регулирования, управления и защиты, собственно бортовая сеть с распределительными устройствами, устройствами защиты цепей потребителей, а также устройствами защиты от радиопомех, статического электричества и электромагнитных излучений. Различают первичные и вторичные источники электроэнергии. К первичным источникам относят бортовые электрогенераторы и аккумуляторные батареи. Ко вторичным источникам относят трансформаторы и преобразователи.

Надёжность системы электроснабжения ЛА является одним из основополагающих факторов безопасности полёта. Поэтому предусматривается комплекс мер для надёжности функционирования и повышения живучести бортовой СЭС ЛА. Как правило, применяют основные, резервные и аварийные источники электроэнергии. Основные источники обеспечивают потребности в электроэнергии в нормальных условиях полёта. Резервные источники питают потребители при нехватке мощности основных источников, вызванной отказами в СЭС. Аварийные источники питают только жизненно важные системы ЛА (потребители первой категории), без которых невозможно безопасное завершение полёта.

На электрооборудование летательных аппаратов действует ряд неблагоприятных факторов — вибрации, ускорения, большие перепады температуры и давления, ударные нагрузки, агрессивные среды паров топлива, масел и спецжидкостей, иногда очень едких и токсичных. Конструктивными особенностями агрегатов электрооборудования летательных аппаратов является очень высокое качество изготовления, высокая механическая и электрическая прочность при минимальном весе и габаритах, пожаровзрывобезопасность, относительная простота в эксплуатации, полная взаимозаменяемость однотипных изделий и т. д.

Генераторы

Генератор постоянного тока ГС-18М, демонтированный

По принципу действия авиационные генераторы не отличаются от аналогичных наземных генераторов, но обладают рядом особенностей: малый вес и габариты, большая плотность тока якоря, принудительное воздушное, испарительное или жидкостное охлаждение, высокая частота вращения ротора, применение высококачественных конструкционных материалов. В качестве источников постоянного тока обычно применяют бесконтактные синхронные генераторы переменного тока и коллекторные генераторы постоянного тока. Генераторы устанавливаются на двигателях и вспомогательных силовых установках (ВСУ), при этом частота вращения турбовинтовых двигателей самолётов и вертолётов стабилизирована регулированием нагрузки двигателя за счёт изменения шага винта, а вот на турбореактивных двигателях частота вращения ротора может меняться в широких пределах и при жёстком механическом приводе на генератор переменного тока частота также существенно изменяется, что часто недопустимо по ТУ потребителей.

Поэтому электрические сети строят по разным принципиальным схемам. Построение сети зависит от назначения ЛА, его конструктивных особенностей и применяемого оборудования. Например, на самолёте Ту-134 в качестве основных источников электроэнергии применяются генераторы постоянного тока на двигателях, а для питания переменным током стабильной частоты 200/115 вольт, 400 Гц применяются электромашинные преобразователи. На большинстве ВС установлены генераторы переменного тока, выдающие ток стабильной частоты либо за счёт постоянной частоты вращения двигателя (ВСУ и многие турбовинтовые двигатели), либо за счёт привода постоянных оборотов (ППО, также называются приводами постоянной частоты вращения — ППЧВ).

Блок регулировки, защиты и управления генератора постоянного тока БРЗУ-4В (неисправный)

Существуют также ВС, где на двигателях установлены генераторы нестабильной частоты, от которых питаются нетребовательные к частоте потребители — люминесцентное освещение, противообледенительная система, выпрямительные устройства, а от выпрямительных устройств питаются преобразователи, выдающие переменный ток стабильной частоты. Такова, например, система электроснабжения Ан-140 — частота вращения генераторов меняется от 70 до 100 % максимальной, от генераторов питаются три выпрямительных устройства, от выпрямительных устройств питаются два мощных (2,5 кВА) полупроводниковых преобразователя ПТС-2500 на 115/200 В, 400 Гц.

Генераторы всегда работают в комплекте с аппаратурой защиты и управления. Например, генераторы переменного тока ГТ40ПЧ6, ГТ40ПЧ8, ГТ60ПЧ8 и некоторые другие работают с блоком защиты и управления БЗУ-376СБ и блоком регулирования напряжения БРН-208МА либо с одним блоком регулирования, защиты и управления БРЗУ-115ВО. БЗУ защищает генератор от превышения тока и частоты (отключает привод генератора при частоте более 480 Гц), нагрузку (отключением контактора, подключающего генератор к сети) — от повышений и понижений напряжения и частоты. БРН регулирует выходное напряжение генератора. БРЗУ объединяет все эти функции, а также он легче комплекта БЗУ + БРН по массе — 4,62 кг против 5,3 и 4,4 соответственно.

Преобразователи тока

Электромашинный преобразователь на три киловатта

На летательных аппаратах в качестве вторичных источников тока применяются электромашинные преобразователи и статические полупроводниковые преобразователи (инверторы). Цифра в обозначении преобразователей выпуска СССР и России, как правило, обозначает его мощность в вольт-амперах. Электромашинный преобразователь представляет собой агрегат, состоящий из электродвигателя постоянного тока и генератора переменного тока (иногда — двух), механически закреплённых на одном валу. Принцип действия такого преобразователя основан на двукратном преобразовании электрической энергии в электрических машинах — двигателе и генераторе. Схема стабилизации оборотов (частоты вращения) обычно расположена в коробке управления. Наиболее широко распространены преобразователи серий ПО (однофазные на 115 вольт), ПТ (трёхфазные на 200/115 вольт или 36 вольт) и ПТО (комбинированные). При КПД в пределах 50-60 % мощность электромашинного преобразователя может быть от 125 ВА (ПТ-125Ц) до 6 кВА (ПО-6000). Электромашинные преобразователи требуют регулярного технического обслуживания (обычно через каждые 100 часов налёта или наработки) и контроля состояния щёточно-коллекторных узлов (ЩКУ) с заменой щёток токосъёмников по мере износа.

Статические преобразователи преобразуют постоянный ток в переменный с помощью управляемых полупроводниковых приборов — транзисторов или тиристоров. Их шум и вибрации значительно ниже, чем у вращающихся преобразователей (из подвижных элементов — только вентилятор охлаждения, в маломощных преобразователях вообще отсутствующий), КПД может достигать 85 %, что особенно важно при аварийном питании самолёта от аккумуляторов. Распространены преобразователи ПТС-25 (работает в паре с резервным авиагоризонтом АГР-72 и обеспечивает его постоянное автономное питание от аккумуляторов), ПТС-250 (вырабатывает напряжение 36 В обратной фазировки, требующейся в системе 36 В Ту-154 и некоторых других ВС), ПТС-800 (установлен, в частности, на Ту-204, Як-42, Ту-142МЗ, вертолёте Ка-27 и др.), ПТС-1600 и ПТС-2500 (вырабатывают 115/200 В), однофазный ПОС-25 (используется для питания розеток электробритв напряжением 127 В, 50 Гц), ПОС-1000 (на 115 В, 400 Гц) и др.

Привод постоянных оборотов

При необходимости получить от генератора, приводимого двигателем с изменяющейся частотой вращения, напряжение стабильной частоты генераторы подключаются к редуктору через привод постоянных оборотов (ППО). Различают разные схемы ППО — гидравлические, пневматические, механические. Применение нашла гидростатическая схема дифференциального типа (гидронасос-гидромотор), в которой механическая энергия вращения, отбираемая от вала авиадвигателя, преобразуется в энергию давления рабочего тела — масла. Регулирование частоты вращения осуществляется гидравлическим центробежным автоматом, управляющим производительностью гидронасоса. В случае с большинством турбовинтовых авиадвигателей и ВСУ генераторы переменного тока работают на постоянной частоте вращения, обусловленной стабильностью оборотов двигателя. Первичная (основная) система переменного тока стабильной частоты применяется, например, на самолётах Ан-72 и Ан-148, Ил-62 и Ил-76, Ту-154 и Ту-204, Су-27 и МиГ-29, вертолётах Ка-27 и Ка-50. На этих машинах для получения постоянного тока используются полупроводниковые выпрямительные устройства (ВУ).

Турбогенераторы

На летательных аппаратах может применяться смешанная схема электроснабжения, из сетей постоянного тока и сетей переменного тока стабильной или нестабильной частоты, а также дополнительные сети для питания различной сложной аппаратуры (автономные системы электроснабжения). К примеру, генератор переменного тока может работать от воздушной турбины, которая, в свою очередь, работает на отбираемом от компрессора авиадвигателя сжатом воздухе. Такой агрегат называется турбогенератором и применяется достаточно редко, в частности, на самолётах Ан-22, Ту-95/142, специальных модификациях Ан-12, Ил-76 и др. Турбогенератор типа ТГ-60/2, стоящий на Ту-95МС, состоит из турбины и обычного самолётного генератора ГТ60ПЧ8 (60 кВА, 115/200 В, 400 Гц, 8000 мин–1, такие же стоят на маршевых двигателях НК-12МП) и используется для питания потребителей током стабильной частоты 400 Гц на земле, когда двигатели работают на земном малом газе (6600 мин–1 вместо номинальных 8300 мин–1) и генераторы не выдают номинальные 400 Гц. После включения ТГ раскручивается 2 мин. Для нормальной работы необходим отбор не менее чем от двух двигателей, иначе ТГ «заваливает» — не набирает под нагрузкой номинальных оборотов 8000 мин–1.

Более распространены турбонасосные установки (ТНУ — гидронасос, приводимый от воздушной турбины), используемые как источники давления в гидросистемах, например, Ту-22М, Ан-124, Ил-86 и ещё ряде машин, но к СЭС они отношения не имеют.

Бортовые аккумуляторные батареи

Авиационная бортовая никель-кадмиевая аккумуляторная батарея 20НКБН-25-У3. Краской от руки написан номер борта — «45»

На современных ЛА аккумуляторные батареи применяются в качестве аварийных источников электроэнергии, для питания потребителей первой категории, без которых невозможно нормальное завершение полёта. В свою очередь, аккумуляторы могут питать аварийные преобразователи тока (обычно небольшие электромашинные или статические) для потребителей первой категории, требующих питания переменным током. В течение всего полёта аккумуляторы работают в буфере с генераторами постоянного тока (где это предусмотрено). Используют свинцовые (12САМ-28, 12САМ-23, 12САМ-55), серебряно-цинковые (15СЦС-45) и никель-кадмиевые (20НКБН-25, 20НКБН-40, 20НКБН-28, 20KSX-27) аккумуляторные батареи. Продолжительность полёта при питании БЭС только от АКБ может сильно варьироваться на разных типах авиатехники: от нескольких часов (например, сейчас уже списанный бомбардировщик типа Ту-16, от АКБ летит до полутора часов) до нескольких минут (Ту-22М3, не более 12-15 минут).

Сегодня наиболее распространены батареи типоразмера 20НКБН25, взаимозаменяемые с батареями VARTA 20FP25. Цифры означают: батарея 20-элементная номинальной ёмкостью 25 ампер-часов. Существуют батареи со встроенным термодатчиком (20НКБН25-ТД и др.), установленным на одной из внутренних перемычек — датчик срабатывает при нагреве выше 70 °С, что случается при тепловом разгоне и включает сигнализацию перегрева аккумулятора, что при исправной в остальном СЭС служит сигналом к немедленному выключению аккумулятора. На современной технике цепи сигнализации заложены изначально, некоторые более старые типы дорабатываются: например, на Ту-154 бюллетень доработки выпущен после обесточивания в воздухе и аварийной посадки самолёта RA-85684 из-за неправильных действий бортинженера.

Распределительные сети

Жгуты электропроводки в отсеке самолёта, открытый монтаж Одна из распредкоробок самолёта со снятой крышкой Рабочее место бортэлектрика Ил-76 Щиток автономного электроснабжения (от турбогенераторов) Приборная доска оператора Ту-22М3 — органы управления и контроля бортовым электроснабжением Рабочее место бортрадиста Ан-26, справа — энергопанель Переключатели, используемые на панелях летательных аппаратов

Бортовая электрическая сеть (БЭС) представляет собой сложную систему каналов передачи электроэнергии от источников к приёмникам и состоит из шин, электропроводки, распределительных устройств, коммутационной и защитной аппаратуры. Сети условно делятся на централизованные, децентрализованные и смешанные. В централизованной сети электроэнергия подводится вначале к шинам центральных распределительных устройств (ЦРУ), а затем к периферийным распределительным устройствам (РУ) — распределительным панелям (РП), распределительным коробкам (РК) и распределительным щиткам (РЩ), для питания всего бортового оборудования ЛА. В децентрализованной БЭС ЦРУ отсутствуют в принципе и распределение электроэнергии производится сразу по РК и РП потребителей. Также существует БЭС смешанного типа, имеющая признаки централизованной и децентрализованной сети. Для повышения надёжности применяется деление бортсети на, например, сеть постоянного тока левая и правая, или сеть первого, второго или третьего генераторов. Сети могут питаться от параллельно (на общую нагрузку) работающих генераторов, при этом отказ одного, к примеру, генератора не приводит к обесточиванию сети. Применяется также перекрёстное питание — сеть № 1 питается от генератора № 1 (левый двигатель) и № 3 (правый двигатель). В свою очередь, сеть № 2 питается от генератора № 2 (левый двигатель) и № 4 (правый двигатель). Если принять, что мощности одного генератора достаточно для питания всех потребителей этой сети, тогда получается, что в случае отказа одного двигателя (любого) и, соответственно, остановки двух генераторов — это никак не отразится на электроснабжении самолётных систем.

В случае отказа генератора (генераторов) сеть автоматически (или вручную) подключится к соседней исправной сети. В случае неисправности в самой сети, например, коротком замыкании, сеть остаётся обесточенной, но часть потребителей этой сети (при условии их исправности) могут быть переключены на питание от другой сети (переключаемые шины). Небольшая часть БЭС, к которой подключены потребители первой категории, питается от аккумуляторной шины напрямую в течение всего полёта. Часть оборудования подключается к шинам двойного питания (также называемых аварийными шинами, АВШ), которые в нормальном режиме работают от генераторов/ВУ, но в случае аварии автоматически подключаются к аккумуляторной шине, либо же к АВШ постоянно подключены все источники (аккумуляторы, ВУ, генераторы…), а от АВШ питаются отключаемые шины, которые отключаются при отказе всех или почти всех основных источников (питании от аккумуляторов). Такая сложная система коммутации сетей преследует только одну цель — максимальное повышение живучести электропитания ЛА при разнообразных отказах и повреждениях. На более современных летательных аппаратах применяется автоматический контроль параметров работы генераторов и элементов бортсети цифровыми устройствами.

Экипаж имеет возможность управлять некоторыми переключениями, например, на Ту-154, Ту-95 — бортинженер, на Ту-134 — штурман, на Ту-22М — штурман-оператор, на Ан-22, Ил-76 — бортэлектрик, на Ан-12, Ан-24 — бортрадист. На одноместных самолётах-истребителях, а также на современных пассажирских лайнерах с двучленным кабинным экипажем, например на самолётах Airbus, или отечественных Sukhoi SuperJet 100 — пилоты, на их рабочих местах установлены органы контроля и управления энергосистемы. На старых самолётах, где используются генераторы постоянного тока с ручным управлением (Ту-134, Ан-12, Ту-95, Ан-24), в обязанности экипажа входит ручная подстройка разбаланса токов сетей (регулировкой напряжения генераторов), для чего в кабине установлены выносные регуляторы, а на современных самолётах практически всё автоматизировано, требуется лишь включение источников перед полётом, выключение после полёта, а вмешательство — лишь в серьёзных аварийных ситуациях.

На больших самолётах количество РК, РП и РУ может достигать нескольких десятков (более сотни), а общая длина проводки — сотен (и даже тысяч) километров. При этом все без исключения потребители имеют защиту от токовых перегрузок и КЗ — автоматы защиты сети, плавкие предохранители различных типов и силы тока — от 0,5 до 900 ампер. Как правило, вся коммутационная и защитная аппаратура компактно сосредотачивается в распределительных устройствах, для удобства обслуживания и монтажа.

Аппараты защиты

Дифференциально-минимальное реле ДМР-600Т (для сравнения внизу ДМР — кузнечик) Однофазные и трёхфазные автоматы защиты Автомат переключения шин АПШ-3М (неисправен и неремонтопригоден) Панель АЗС над рабочим местом бортрадиста Ан-26

Для защиты СЭС применяются самые различные аппараты — предохранители, автоматы защиты сети, различные реле, трансформаторы тока. Из плавких предохранителей наиболее распространены СП (стеклянный плавкий, срабатывание которых проверяется визуально по перегоранию элемента), рассчитанные на токи от 0,25 до 30 А, ПМ (плавкий малоинерционный, имеющий сигнализатор срабатывания, при перегорании элемента выступающий из корпуса), выпускаемые на токи от 1 до 75 А. На токи в сотни ампер выпускаются предохранители ТП (тугоплавкие), они применяются для защиты источников, а также особо мощных потребителей, например, моторов постоянного тока привода шасси и закрылков на Ту-95.

Тепловые автоматы

Основные типы тепловых автоматов защиты:

  • АЗС — автомат защиты сети, выполненный без свободного расцепления, то есть при необходимости его можно удерживать рукой от срабатывания. Бывают негерметичного и герметичного (АЗСГ) исполнения, выпускаются на токи от 1 до 40 А;
  • АЗР — автомат защиты с расцепителем, который при срабатывании невозможно удержать и потом восстановить до остывания, выпускаются на токи от 30 до 150 А;
  • АЗ3 — автомат защиты трёхфазный, предназначенный для защиты нагрузок, для которых недопустим неполнофазный режим работы (асинхронные электродвигатели, выпрямительные устройства);
  • АЗК — автомат защиты кнопочный, имеющий однофазное (АЗК1) и трёхфазное (АЗК3) исполнения, отличается тем, что рукоятка выполнена не в виде рычажка, а в виде кнопки. На основание кнопки нанесён белый поясок, который виден при отключенном положении автомата. Выпускаются на токи от 1 до 150 А.

Несмотря на то, что автоматы предназначены не для оперативных переключений, а только для защиты, распредустройства нередко устанавливаются в кабине, поэтому автоматы АЗС и АЗ3 выполняются под различные типы освещения — под ультрафиолетовое, со светомассой в головке рычажка, без индекса, под красное или белое, без светомассы и с удлинённым (для АЗС) на 6 мм рычажком — с индексом К. Например, АЗСГК-5 — АЗС герметичный под красное/белое освещение, номинальный ток 5 А, АЗ3К-10 — автомат защиты трёхфазный под красное/белое освещение, номинальный ток фазы — 10 А.

На некоторых самолётах (например, на Як-42) для снижения массы АЗР многих цепей установлены не на отдельных РУ, а прямо на приборных щитках и используются для оперативного управления.

Дифференциально-минимальное реле

Из защитных реле наиболее распространены поляризованные реле для цепей постоянного тока — дифференциально-минимальные реле ДМР-200, ДМР-400, ДМР-600, аппарат защиты и управления ВУ АЗУВУ-200, цифры означают максимальный ток в амперах. Ими защищаются источники постоянного тока — генераторы и выпрямительные устройства — от обратного тока и короткого замыкания в линии от источника до РУ. ДМР также выдаёт в цепи управления распределением электроэнергии сигнал о нормальной работе источника.

В ДМР две основных катушки — токовая, включенная между источником (клемма «+») и нагрузкой (клемма «Сеть»), и включающая, включенная между источником и минусом (клемма «–»). Если источник запускается нормально, то появление напряжения вызывает течение тока по включающей обмотке и её магнитный поток замыкает силовые контакты ДМР — источник подключается через токовую обмотку к нагрузке. Токовая и включающая обмотки намотаны на одном сердечнике так, что при течении тока от «+» в сеть их магнитные потоки складываются. Если источник отказывает или происходит КЗ в линии от источника до ДМР, то ток в токовой обмотке начинает течь в обратном направлении, потоки обмоток начинают действовать друг против друга и при токе срабатывания (10-15 А) взаимно уничтожаются, в результате чего размыкается и остаётся в таком положении поляризованный контакт, включенный в цепь включающей обмотки, она обесточивается и силовые контакты ДМР отключаются.

В ДМР имеются две специальных обмотки — контрольная и возвратная, также намотанные на общий сердечник и имеющие общий минус со включающей обмоткой. Намотаны они в разных направлениях таким образом, что при подаче плюса на контрольную обмотку (клемма «К» для АЗУВУ-200) её магнитный поток работает против основного и вызывает отключение поляризованного контакта (контроль исправности ДМР), а подача плюса на возвратную (клемма «Г» АЗУВУ-200) включает поляризованный контакт, восстанавливая ДМР после срабатывания или проверки.

Дифференциальная защита переменного тока

Защита генераторов переменного тока, по сути похожая на действие ДМР, обеспечивается блоками трансформаторов тока совместно с блоком защиты генератора (БЗУ-376, БРЗУ-115 и др.). Блок трансформаторов тока — объединённые в один корпус три тр-ра тока, отечественной промышленностью выпускаются БТТ-30Б, БТТ-40, БТТ-60ПМ, БТТ-120БТ для генераторов на 30, 40, 60, 120 кВА соотв., блоки датчиков тока (отличие только в названии) БДТ-16К, БДТ-90К, БДТ-120БТ для генераторов мощностью 16, 90, 120 кВА. Один БТТ в бескорпусном виде встроен прямо в генератор либо установлен на фазных проводах X, Y, Z (уходящих на корпус), второй устанавливается в распредустройстве. Одноимённые трансформаторы (стоящие на одной фазе, например, на фазе A в РУ и на проводе X от генератора) включены через блок защиты встречно, если ток, потребляемый РУ, равен току, вырабатываемому генератором, то результирующий ток обоих ТТ равен нулю.

Если в линии возникает утечка или короткое замыкание, то равновесие нарушается и блок отключает генератор. Также блок обеспечивает максимальную токовую защиту генератора, контролируя токи трансформаторов по отдельности. При любой ошибке монтажа (неправильном подключении проводов к БТТ или перепутанной укладке фаз в окна БТТ, перевёрнутой установке БТТ, когда надписи «От генератора» и «К нагрузке» на корпусе БТТ не соответствуют прокладке проводов) дифференциальная защита работает неправильно: либо не отключается при КЗ в линии, либо не отключается при перегрузке, либо наоборот — генератор «не держит нагрузку», то есть отключается даже при малой нагрузке. Неправильный монтаж явился причиной пожара самолёта Ту-154 в Сургуте — не сработала максимальная токовая защита.

Элементы коммутации

Авиационные штепсельные разъёмы и соединители

Основные элементы коммутации в бортовой сети — это выключатели, переключатели и электромагнитные реле. Применяются стандартные маломощные реле, но большей частью в качестве переключающих элементов используются высоконадёжные реле и контакторы, производимые специально для авиационной техники. Эти реле имеют особенную цифро-буквенную маркировку, абсолютно отличную от принятой в электрорадиотехнике.

Также в бортовой сети летательного аппарата достаточно широко используются различные полупроводниковые диоды в цепях пассивной диодной логики.

На больших самолётах количество реле и контакторов может быть настолько велико, что при включении самолёта под ток одновременное срабатывание сотен реле внутри всей конструкции вызывает характерный, ни с чем не сравнимый звук.

Маркировка авиационных реле

Реле и контакторы отечественного производства, применяемые в авиационной технике, имеют специфическую маркировку, состоящую из девяти цифробуквенных знаков русского алфавита. Маркировка позволяет определить основные конструктивно-технические данные каждого конкретного изделия.

Авиационные реле и контакторы

Первая буква в маркировке обозначает номинальное напряжение в цепи обмотки:

  • Д — Десять вольт
  • П — Пятнадцать вольт
  • Т — Тридцать вольт
  • С — Сто пятнадцать вольт (однофазный переменный ток)

Вторая буква — назначение:

  • Т — токовое реле
  • К — коммутационное реле, а также контактор
  • В — реле времени
  • Д — детекторное реле
  • Н — реле напряжения
  • П — реле с питанием цепи управления переменным током

Третья буква и четвёртая цифра обозначают значение номинального тока (в амперах) в цепи контактов.

Буква обозначает разряд:

  • Е — единицы
  • Д — десятки
  • С — сотни
  • Т — тысячи

Цифра на четвертом месте указывает количество единиц данного разряда.

На пятом и шестом месте ставят две цифры или цифру и букву П — количество и вид контактов, цифра на пятом месте — количество независимых нормально замкнутых контактов (отсутствие данных контактов обозначается цифрой 0), цифра на шестом месте — количество независимых нормально замкнутых контактов, цифра на пятом месте и буква П на шестом — количество переключающих контактов (например, 01 — один нормально разомкнутый контакт, 02 — два нормально разомкнутых контакта, 2П — два переключающих контакта, 6П — шесть переключающих контактов).

Расположенная на седьмом месте буква — режим работы реле:

  • Д — длительный режим работы реле;
  • К — кратковременный режим работы реле.

Идущая на восьмом месте буква Т — реле термостойкое.

Также седьмой знак может обозначать максимально-допустимую длительно действующую температуру окружающей среды:

  • 0 — 85 °С;
  • 1 — 100 ° С;
  • 2 — 155 °С.

В ранее выпущенных реле обозначение температуры окружающей среды:

  • ОД — 85 °С,
  • 1 — 100° С,
  • 1П — 150 °С.

Девятый знак в виде любой буквы русского алфавита условно обозначает дополнительные конструктивные особенности и модификации реле, при этом буква Г означает герметичное исполнение.

Примеры расшифровки:

Реле ТКЕ53ПОДГ — коммутационное герметичное реле постоянного тока с номинальным напряжением 30 В (фактически — 28 вольт), имеющее три независимых переключающих контакта на ток 5 А, рассчитанное на длительно действующую температуру окружающей среды — до +85 °С.

Контактор ТКС133ДОД — контактор с обмоткой, рассчитанной на включение в бортовую сеть постоянного тока с номинальным напряжением 28 В, имеющий три нормально замкнутых и три нормально разомкнутых контакта на ток до 100 А, рассчитанный на длительно действующую температуру окружающей среды до +85 °С.

Привет студент

Под системой бесперебойного электропитания постоянного тока подразумевается совокупность системы электроснабжения, УБП и токораспределительных сетей, объединенных общей целью — обеспечения надежной и бесперебойной подачи к аппаратуре электрической энергии постоянного тока требуемого качества во всех режимах работы электроустановки. Кроме того, система должна:

• обеспечивать высокую степень автоматизации и единство централизованного мониторинга и управления на основе стандартных интерфейсов и программного обеспечения;

• возможность «горячей» замены аккумуляторных батарей и преобразовательных модулей в УБП без перебоев в электропитании аппаратуры;

• иметь средства отображения и индикации состояния устройств и модулей, входящих в состав системы, а также обеспечивать работу оборудования системы без постоянного присутствия эксплуатационного персонала.

Высокая надежность систем бесперебойного электропитания постоянного тока обеспечивается прежде всего за счет: высокой надежности систем электроснабжения; применения необходимого аккумуляторного резерва; высокой надежности элементов и применения избыточного количества модулей в УБП с использованием горячего резервирования их.

В УБП постоянного тока применяется, как правило, аккумуляторный резерв в двухгруппном исполнении, т. е. две аккумуляторные батареи, включенные через устройства защиты и коммутации между собой параллельно. Емкость каждой группы АБ должна обеспечивать электропитание аппаратуры, как правило, в течение по крайней менее 0,5 часа при ее максимальном потреблений. При недостаточно надежном электроснабжении объекта связи применяется аккумуляторный резерв на большее время. Так, в необслуживаемых регенерационных пунктах (НРП) применяется аккумуляторный резерв в двухгруппном исполнении с суммарным запасом емкости на время не менее 24 часов, что обеспечивает питание оборудования до устранения перерыва в электроснабжении или подъезда передвижной электростанции. Рекомендуемое значение аккумуляторного резерва для объектов связи различного назначения приводится в ВСН-332.

Широкое распространение на сети связи получили УБП постоянного тока с непрерывным подзарядом аккумуляторных батарей (по классификации ОСТ 45. 55-99 «Системы и установки питания средств связи взаимоувязанной сети связи РФ» — буферные системы питания). Особенностью таких УБП (буферных систем) является объединение в одной точке выходных выводов выпрямителей, аккумуляторной батареи АБ и питаемой нагрузки, как показано на рисунке.

В состав УБП входит:

• комплект выпрямительных устройств, состоящий из К выпрямителей (модулей);

• автоматические выключатели A1-1… A1-К, с помощью которых выпрямительные устройства подключаются к вводному щиту (щит вводной распределительный автоматизированный — ЩВРА);

• автоматические выключатели А2-1… А2-К, установленные в минусовом полюсе каждого из выпрямителей;

• двухгруппная аккумуляторная батарея (АБ № 1, АБ № 2);

• автомат (контактор) глубокого разряда АГР;

• батарейные автоматическиечвыключатели АБ1, АБ2, установленные в минусовом полюсе каждой из аккумуляторных батарей;

• токовые шунты, с помощью которых осуществляется измерение тока в цепи аккумуляторных батарей Ш1 и в цепи нагрузок Ш2;

• автоматические выключатели An-1… An-m, через которые стативы аппаратуры подключаются к УБП;

• контроллер, обеспечивающий мониторинг и управление УБП.

В УБП общее число выпрямительных устройств (модулей) n вы

бирается с избыточностью по формуле

где nраб — необходимое число рабочих выпрямителей, обеспечивающее питание аппаратуры при ее максимальном потреблении и заряд аккумуляторных батарей; mрез — число резервных выпрямителей.

В нормальных условиях работы УБП все К модулей постоянно включены, т. е. избыточные модули обеспечивают горячий резерв. На рисунке показан вариант УБП с однофазными выпрямителями типа ВБВ, при этом отдельные выпрямители подключаются к различным фазам (L1… L3) трехфазной сети переменного тока через индивидуальные автоматические выключатели (A1-1… А1-К). В условиях нормального электроснабжения и исправном оборудовании электропитание аппаратуры осуществляется от стабилизирующих выпрямительных устройств. Несекционированная двухгруппная аккумуляторная батарея (АБ № 1, АБ № 2), постоянно подключенная параллельно нагрузке (выходным зажимам выпрямительных устройств), получает непрерывный подзаряд от этих же выпрямительных устройств. Значение выходного напряжения выпрямительных устройств определяется числом последовательно соединенных элементов (аккумуляторов) в каждой группе АБ и требуемым напряжением содержания одного элемента. При относительно небольшой номинальной емкости каждой группы аккумуляторной батареи (до 100 А-ч) она собирается из моноблоков по три или шесть элементов в каждом. Чаще всего эти моноблоки и все остальное оборудование СЭП размещаются в одном стативе. В случае применения кислотных аккумуляторов закрытого типа большой номинальной емкости эти аккумуляторы размещаются в отдельном помещении (аккумуляторной), имеющем приточно-вытяжную вентиляцию. В последнем случае для уменьшения индуктивности проводников (шин) подключающих к СЭП аккумуляторную батарею ее плюсовые и минусовые выводы должны располагаться как можно ближе друг к другу, для чего элементы каждой группы АБ разворачиваются как показано на рисунке (размещаются по так называемой U-образной схеме). При перерывах в электроснабжении питание аппаратуры осуществляется от разряжающейся АБ. Для того чтобы не допустить сульфатации аккумуляторов в результате недопустимо глубокого их разряда, в систему электропитания вводится контактор АГР (автомат глубокого разряда), с помощью которого осуществляется отключение АБ от аппаратуры.

При восстановлении электроснабжения выпрямительные устройства должны обеспечить питание аппаратуры и заряд АБ, без отключения ее от нагрузки. Заряд АБ может осуществляться либо в одну ступень (при напряжении, равном напряжению содержания АБ), либо в две ступени. В последнем случае выходное напряжение выпрямителей на первой ступени заряда обычно выбирается из расчета 2,35 В на один элемент АБ.

Функции, выполняемые контроллером в данной СЭП, могут быть различными в зависимости от фирмы-изготовителя аппаратуры электропитания. Так, в системе электропитания УЭПС-2, выпускаемой Юрьев-Польским заводом, контроллер выполняет следующие функции:

• обеспечивает контроль: тока АБ и тока нагрузки; напряжения на АБ и нагрузке; текущей температуры окружающей среды; емкости полученной АБ при ее заряде; емкости отданной АБ при ее разряде. На дисплей контроллера выводятся значения выше перечисленных параметров, а также текущие время и дата;

• следит за состоянием автоматических выключателей: на выходе, выпрямителей (А2-1… А2-К); аккумуляторной батареи (АБ1, АБ2) и нагрузки. (An-1… An—m); аварийных реле выпрямителей; автомата (АГР); наличием всех трех фаз питающей сети. При отключении любого из автоматов или срабатывании защиты на дисплее контроллера появляется соответствующая информация. Все аварийные ситуации сопровождаются звуковым сигналом и с помощью двух аварийных реле контроллера сигналы аварий 1-й и 2-й степени передаются в ЦТЭ (центр технической эксплуатации);

• обеспечивает дискретное изменение выходного напряжения выпрямителей (напряжения содержания АБ) при отклонении температуры окружающей среды от номинального значения (20 °С) на ±10 °С.

Во время работы контроллер непрерывно ведет протокол, записывая информацию в энергонезависимую память, поэтому при соединении контроллера с компьютером на экран монитора можно вывести все текущие параметры и состояние всех сигналов ввода и вывода в позиционном коде с указанием даты и времени возникшей аварийной ситуации. С помощью модема можно передавать текущие параметры и все сигналы по телефонной линии на любое расстояние. Обмен информацией с компьютером ведется по интерфейсу RS-232 со скоростью 9600 бит/с. Питание контроллера осуществляется непосредственно от АБ.

К достоинствам рассмотренной СЭП, называемой часто буферной модульной СЭП, следует отнести:

• высокое качество вырабатываемой электрической энергии, так как во всех режимах работы СЭП АБ остается подключенной к нагрузке;

• минимальное количество устройств, входящих в состав ЭПУ, что объясняет ее относительно низкую стоимость и высокую надежность;

• высокий КПД (практически равный КПД выпрямителей может достигать 91… 94 %) и высокий коэффициент мощности (в случае применения выпрямителей с корректором коэффициента мощности).

Буферная модульная система электропитания находит самое широкое применение для цифровой аппаратуры как автоматической и многоканальной электросвязи, так и радиосвязи.

К недостаткам данной системы обычно относят широкие пределы изменения выходного напряжения. Например, при 30 элементах в каждой группе АБ и при конечном разрядном напряжении одного элемента до 1, 70 В напряжение на выходных зажимах УБП (ЭПУ) изменяется от 30 • 1,7 = 51,1 В до 30 • 2,35 = 70,5 В. Столь широкие изменения напряжения на выходе ЭПУ недопустимы для аппаратуры электромеханических систем коммутации. Так, для координатных АТС допустимое изменение напряжения на зажимах стативов аппаратуры лежит в пределах 58…72 В, что не позволяет выполнять ЭПУ по буферной модульной системе электропитания, являющейся наиболее простой, экономичной и надежной по сравнению с другими буферными системами электропитания.

Наибольшее применение в настоящее время для аппаратуры электромеханических систем коммутации находят ЭПУ, выполненные по буферной системе электропитания с вольтодобавочными конверторами.

В состав оборудования ЭПУ входят: вводной распределительный щит ЩВРА; два буферных выпрямительных устройства БВ1, БВ2; резервный зарядный выпрямитель РЗВ; вольтодобавочные конверторы ВДК (в количестве К модулей); обходной диод ОД; двухгруппная аккумуляторная батарея АБ1, АБ2; перекидной рубильник ПР; блок разрядных резисторов БРР; токовые шунты Ш1… Ш4; перемычки П1, П2; автоматические выключатели.

В этой системе в нормальном режиме (при наличии сети переменного тока и исправных выпрямительных устройствах) электропитание аппаратуры осуществляется от выпрямителей (БВ1, БВ2) как через так называемый обходной диод ОД, так и через выходные диоды самих ВДК. Обходной диод вводится в ЭПУ для повышения ее надежности работы.

Двухгруппная аккумуляторная батарея подключена параллельно выходу выпрямителей и находится в режиме содержания, т. е. как и в предыдущей СЭП значение выходного напряжения выпрямителей в нормальном режиме определяется числом последовательно соединенных элементов (аккумуляторов) в каждой группе АБ и необходимым напряжением содержания аккумулятора. Обычно в качестве выпрямительных устройств в этой СЭП применяются выпрямительные устройства типа БУК или БУТ, представляющие собой управляемые выпрямители с фазоимпульсным способом регулирования напряжения в цепи постоянного тока посредством либо дросселей насыщения (выпрямители БУК), либо тиристоров (выпрямители БУТ). Эти выпрямители имеют относительно низкие значения КПД и коэффициента мощности, поэтому для аппаратуры, имеющей существенные изменения потребления в течение суток (например, аппаратура координатных АТС), буферные выпрямители работают по принципу ведущий-ведомый. При малой нагрузке на ЭПУ работает только один из буферных выпрямителей — ведущий, что позволяет загрузить его на мощность, близкую к его номинальной, и тем самым иметь относительно высокие энергетические показатели ЭПУ в целом. Ведущий выпрямитель включает другой выпрямитель — ведомый только тогда, когда сам загружается на 90… 95 % своей номинальной мощности. Следовательно, в этом случае имеет место холодное резервирование выпрямителей. Максимальное число буферных выпрямителей в ЭПУ равно трем. Резервный зарядный выпрямитель автоматически включается в случае отказа любого из буферных выпрямителей.

Вольтодобавочные конверторы ВДК, подключенные к выходу выпрямителей, находятся в ждущем режиме, так как они настраиваются на стабилизацию выходного напряжения ЭПУ на уровне на 2…3 В ниже уровня напряжения содержания АБ.

При отключении сети переменного тока питание аппаратуры осуществляется суммарным напряжением разряжающейся АБ и тем напряжением, которое появляется на выходе ВДК. Обходной диод при этом закрыт. Если каждая группа АБ содержит по 28 кислотных аккумуляторов закрытого типа, то в этом случае ВДК обычно настраиваются на стабилизацию выходного напряжения ЭПУ на уровне 60, 5 В, тогда как напряжение содержания АБ составляет 62, 5 В. С целью получения необходимой надежности бесперебойной подачи электрической энергии к аппаратуре число ВДК выбирается с избыточностью не менее чем 5/4. Принципиально ВДК позволяют наращивать выходную мощность ЭПУ за счет дополнительной установки любого числа конверторов. В настоящее время на вновь вводимых и модернизируемых ЭПУ на выходное напряжение 60 В чаще всего устанавливаются ВДК типа КУВ-12/100-2 (конвертор унифицированный вольтодобавочный на номинальный выходной ток, равный 100 А). Этот конвертор представляет собой два идентичных однотактных преобразователя с прямым включением диода, работающих на частоте 20 кГц. Причем выходные напряжения этих преобразователей сдвинуты по фазе друг относительно друга на половину периода так, что их общий выходной сглаживающий фильтр работает на частоте 40 кГц. Управление силовыми транзисторами этих преобразователей осуществляется широтно-импульсным методом.

При появлении напряжения сети переменного тока включаются все выпрямители ЭПУ (включая РЗВ) и обеспечивают электропитание аппаратуры и заряд обеих групп АБ. Заряд АБ осуществляется, как правило, в две ступени. Причем в начале заряда на первой ступени все выпрямители работают в режиме ограничения тока (стабилизации тока), так как даже частично разряженная АБ представляет для выпрямителей по существу короткое замыкание. Перевод выпрямителей на первую ступень заряда осуществляется за счет закорачивания контактами реле одного из сопротивлений выходного сравнивающего делителя выпрямителя. По мере заряда АБ напряжение на ней возрастает и при достижении значения, равного произведению числа элементов в каждой группе АБ (nэл) на 2, 35 В выпрямители переходят из режима ограничения тока в режим стабилизации напряжения на этом уровне. На начальной стадии заряда АБ, пока напряжение на АБ меньше 60, 5 В, ВДК находятся в работе, обеспечивая стабилизацию выходного напряжения ЭПУ на уровне 60, 5 В. После перехода выпрямителей в режим стабилизации напряжения зарядный ток по мере заряда АБ начинает уменьшаться. Перевод выпрямителей с первой ступени на вторую осуществляется тогда, когда уменьшающийся зарядный ток спадает до значения в 50… 100 раз большего значения тока содержания АБ. Слежение за значением зарядного тока АБ осуществляется специальными устройствами индикации тока УИТ, подключаемыми к токовым шунтам Ш3, Ш4.

Для того чтобы обеспечить возможность проведения контрольных и уравнительных зарядов каждой из групп АБ, РЗВ подключается к АБ через перекидной рубильник ПР. Перемычки П1 или П2 устанавливаются для проведения контрольных разрядов одной из. групп АБ.

Рассмотренная СЭП в отличие от предыдущей требует больших капитальных затрат, что объясняется необходимостью установки ВДК и увеличения емкости аккумуляторной батареи с целью компенсации потерь в этих ВДК. Кроме того, коэффициент полезного действия ЭПУ, выполненной по этой системе (в нормальном ее режиме работы), также оказывается несколько ниже за счет дополнительных потерь в обходных диодах ОД и мощности, потребляемой ВДК, находящимися в ждущем режиме. Следует также отметить, что в отличие от буферной модульной СЭП качество электрической энергии, вырабатываемой ЭПУ в этой СЭП при отсутствии сети переменного тока, определяется не только параметрами АБ и токораспределительной сети постоянного тока, но и внутренним сопротивлением ВДК. В связи с этим при импульсном изменении тока нагрузки и подключении к ЭПУ нелинейных нагрузок эта СЭП может в отдельных случаях терять устойчивость, что приводит к резкому увеличению пульсации на выходе ЭПУ и выходу из строя аппаратуры. Следует отметить, что по мере перехода с электромеханических систем коммутации на цифровые необходимость в применении буферных СЭП с вольтодобавочными конверторами отпадает.

Общим недостатком рассмотренных УБП (ЭПУ) является необходимость применения на каждый номинал выходного напряжения постоянного тока отдельную АБ, т. е. в УБП на выходные напряжения —24, —48 и —60 В следует устанавливать три АБ, каждая из которых рассчитана на свой номинал. Возможно использование на объекте одной АБ (на один номинал выходного напряжения), а другие номиналы выходного напряжения получать с помощью дополнительно устанавливаемых преобразователей. Но такое решение приводит к снижению КПД системы в целом, а также к снижению его надёжности.

Децентрализация СЭП. В настоящее время все более широкое применение в практике электропитания аппаратуры связи находят децентрализованные системы электропитания с радиальными токораспределительными сетями ТРС постоянного тока. В случае радиальной ТРС от УБП к каждому стативу оборудования прокладывается индивидуальная пара токонесущих проводников (от плюсового и минусового полюсов УБП). Применение децентрализованной системы позволяет размещать УБП в непосредственной близости к питаемой аппаратуре, что значительно сокращает длину токораспределительной сети постоянного тока и тем самым снижает потери в ней, позволяя на 3… 5 % повысить КПД СЭП в целом, а также уменьшает помехи и динамические изменения напряжения на зажимах аппаратуры связи. С другой стороны, децентрализация ограничивает зону влияния повреждений в оборудовании самого УБП на функционирование аппаратуры связи, что приводит к увеличению живучести сети связи.

Важным экономическим фактором, отличающим децентрализованную систему, является возможность снижения первоначальных капитальных затрат при ее применении и ускорения отдачи вложенных средств.

Таким образом, упрощается и становится более гибкой схема наращивания мощности оборудования электропитания и проведения реконструкции, повышается ремонтнопригодность, снижаются доля избыточности в установленной мощности и первоначальные капитальные затраты.

Все это приводит к тому, что при более высокой надежности децентрализованных систем их суммарная стоимость становится ниже по отношению к централизованным, при повышении качества выходных характеристик.

Следует отметить еще одну важную особенность децентрализованной системы, которая заключается в возможности создания универсальных УБП. В этих УБП конструктивно могут быть объединены устройства постоянного и переменного тока, а также устройства с различными выходными напряжениями.

ГЕНЕРАТОРНЫЕ УСТАНОВКИ ПОСТОЯННОГО ТОКА

⇐ Предыдущая12345

До 60-х годов основным источником электрической энергии на автомобилях являлись генераторы постоянного тока.

Схема электроснабжения автомобиля показана на рис. 4.1.

Генератор постоянного тока состоит из статора — неподвижно­го корпуса, вращающегося якоря с обмотками и коллектора со ще­точным узлом. Вращающийся якорь, снабженный обмотками, пере­секающими магнитное поле статора, индуцирует в обмотках ЭДС. В каждой секции обмотки якоря ЭДС меняется и по величине и по направлению в зависимости от ее положения относительно магнит­ного поля.

Рассмотрим принцип действия генератора постоянного тока, где подводимая механическая энергия преобразуется в электрическую энергию постоянного тока. Для этого воспользуемся упрощенной схемой генератора постоянного тока (рис. 4.2). В магнитном поле постоянного магнита вращается стальной сердечник, в продольных пазах которого расположен диаметральный виток abcd Начало d конец а этого витка присоединены к двум взаимно изолиро­ванным медным полукольцам. Образующим коллектор, который вращается вместе со стальным цилиндром. По коллектору сколь­зят неподвижные контактные щетки А и В, от которых отходят провода к потребителю энергии R. Стальной сердечник с витком (обмоткой) и коллектором обра­зует вращающуюся часть машины постоянного тока — якорь.

Рис. 4.1.Структурная схема системы электроснабжения автомобиля

Если с помощью какой-либо внешней силы вращать якорь, то стороны витка будут пересекать магнитное поле и в обмотке якоря будет возникать ЭДС:

e = 2Blu

где В — индукция; l — длина стороны витка; u — скорость переме­щения пазовых сторон витка.

Рис. 4.2. Упрощенная схема генератора постоянного тока.

Так как длина и скорость перемещения пазовых сторон обмотки якоря неизменны, то е обмотки якоря прямо пропорциональна В, а форма графика ЭДС определяется законом распределения магнит­ной индукции S, размещенной в воздушном зазоре между поверх­ностью якоря и полюсом самого магнита. Так, например, магнитная индукция в точках зазора, лежащих на оси полюсов, имеет макси­мальные значения (рис. 4.3, а): под северным магнитным полюсом (N) — положительное значение и под южным магнитным полюсом (S) — отрицательное. В точках n и n’ лежащих на линии, проходя­щей через середину межполисного пространства, магнитная индук­ция равна нулю.

Допустим, что магнитная индукция в воздушном зазоре рас­сматриваемой схемы распределяется синусоидально:B=Bmaxsin£. Тогда ЭДС витка при вращении якоря будет также изменяться по синусоидальному закону. Угол а определяет изменение положения якоря относительно исходного положения. На рис. 4.3, а показан ряд положений витка abcd (обмотки) в различные моменты времени за один оборот якоря. При а, равном 360°, ЭДС якоря равна нулю, а при а, равном 270°, имеет максимальное значение, причем отрица­тельное. Таким образом, в обмотке якоря генератора постоянного тока наводится переменная ЭДС, и, следовательно, при подключении нагрузки в обмотке будет переменный ток (рис. 4.3, б,линия 7). За время второго полуоборота якоря, когда ЭДС и ток в обмотке якоря отрицательны, ЭДС и ток во внешней цепи генератора (в на­грузке) не меняют своего направления, т. е. остаются положитель­ными, как и в течение первой половины оборота якоря.

Рис. 4.3. Принцип действия генератора постоянного тока: а — различные поло­жения витка обмотки; б — преобразование переменного тока якоря в постоян­ный ток внешней цепи; 1 — ток в обмотке якоря; 2 — ток во внешней цепи

Действительно, при a = 90° щетка Асоприкасается с коллектор­ной пластиной проводника d,расположенного под полюсом N,и имеет положительный потенциал, а щетка В— отрицательный, так как она соприкасается с пластиной коллектора, соединенной со стороной авитка, находящейся под полюсом S.При a = 270°, когда стороны аи dпоменялись местами, щетки А и Всохраняют неиз­менной свою полярность, так как полукольца коллектора также по­менялись местами и щетка Апо-прежнему имеет контакт с коллек­торной пластиной, связанной со стороной, находящейся под полю­сом N9а щетка В—с коллекторной пластиной, связанной со стороной, находящейся под полюсом 5. В результате ток во внеш­ней цепи не изменяет своего направления (рис. 4.3, б,линия 2),т. е. переменный ток обмотки якоря с помощью коллектора и щеток преобразуется в постоянный. Ток во внешней цепи постоянен лишьпо па-правлению, а его величина изменяется, т. е. ток пульсирует.

Рис. 4.4. Генератор с двумя витками в обмотке якоря: a — схема генератора; б — пульса­ция тока; 1,2 — ток в обмот­ках якоря; 3 — ток во внеш­ней цепи

Пульсации тока и ЭДС значительно ослабляются, если обмотку якоря вы­полнить из большого числа равномерно распределенных по поверхности сер­дечника витков и увеличить соответст­венно число коллекторных пластин. Например, при двух витках на сердеч­нике якоря (четырех пазовых сторо­нах), оси которых смещены относи­тельно друг друга на угол 90°, и четырех пластинах в коллекторе (рис. 4.4, а).В этом случае ток во внешней цепи ге­нератора пульсирует с удвоенной часто­той, но глубина пульсации значительно меньше (рис. 4.4, б).Если витков в об­мотке якоря от 12 до 16, то ток на выхо­де генератора практически постоянен.

На рис. 4.5 представлена конструк­ция генератора постоянного тока.

Рис. 4.5. Генератор постоянного тока: 1 и 16 — крышки; 2 и 12 — шариковые подшипники; 3 и 10 —масленки; 4 — корпус; 5 — соединительный провод; 6 — защитная лента; 7 и 11 — стяжные болты; 8 — щеткодержатель положительной щетки; 9 и 25— уплотнительные манжеты; 13 — защитный колпачок; 14— отра­жательная шайба; 15— отрицательная щетка; 17 — щеткодержатель отрицатель­ной щетки; 18— коллектор; 19 — обмотка якоря; 20— конец обмотки возбужде­ния; 21 — сердечник якоря; 22 — вал якоря; 23 — полюсный сердечник; 24 — ка­тушка обмотки возбуждения; 26— крыльчатка шкива; 27— шкив.

>Электростанции

Установки постоянного тока

Для питания общестанционных нагрузок постоянного тока (повысительная подстанция, центральный щит управления, оборудование вспомогательных цехов) устанавливается отдельная аккумуляторная батарея (того же номера, что и на блоках), обеспечивающая, помимо своих нагрузок, резервирование любой блочной аккумуляторной батареи.
Все батареи работают в режиме постоянного подзаряда, имеют элементные коммутаторы с автоматическим регулированием заданного напряжения (АРН) на шинах постоянного тока системы САР-3603. АРН обеспечивает постоянство напряжения на шинах аккумуляторной батареи как в режиме ее работы с подзарядным устройством (нормальные условия), так и в режиме аварийного разряда батарей.
Все установки постоянного тока с аккумуляторными батареями блочных электростанций связаны между собой сетью резервирования и зарядной сетью (рис. 7-23). Зарядный агрегат (один на электростанцию) подключается нормально к общестанционной установке постоянного тока и специальной сетью заряда связан с остальными установками. Для оперативного управления зарядным устройством на всех щитах постоянного тока предусмотрены ключи дистанционного управления шун-товым реостатом зарядного агрегата. Сеть резервирования в отдельных случаях используется для подключения электродвигателей маслонасосов турбин. Сеть заряда, кроме прямого назначения, используется для выделения на зарядный агрегат заземлившегося участка сети, обнаруженного на каком-то блочном щите постоянного тока.
В местных инструкциях по эксплуатации установок постоянного тока должны быть даны технические характеристики установленных аккумуляторных батарей, под-зарядных и зарядных агрегатов, общий порядок эксплуатации установленных свинцово-кислотных аккумуляторов, режимы работы батареи, описание схемы постоянного тока и порядок отыскания повреждений в различных ее элементах.
Все станционные аккумуляторные батареи работают в режиме подзаряда. При этом полностью заряженная батарея работает в параллель с подзарядным агрегатом, напряжение на котором устанавливается такой величины, чтобы подзарядный агрегат питал всю «нагрузку и компенсировал саморазряд батареи, т. е. постоянно ее подзаряжал. Толчковые нагрузки (например, включение выключателей с электромагнитными приводами) или нагрузки аварийного режима (аварийное освещение, ответственные электродвигатели, подключающиеся к батарее при потере собственных нужд станции) аккумуляторная батарея принимает на себя. Такой режим батареи обеспечивает постоянную ее готовность к принятию нагрузок аварийного режима. Необходимый ток подзаряда батареи подсчитывается по формуле, где /п — ток подзаряда; Сн — номинальная емкость.
Например, для батареи СК-28 ток подзаряда составляет 0,84 а, СК-20—0,6 а.
Нормальный режим аккумуляторной батареи, работающей в режиме постоянного подзаряда, характеризуется величиной напряжения на элементе в предела* 2,1—2,2 в и плотности электролита в банках в пределах 1,20—1,21 при температуре 15° С. Периодически на поверхности электролита отделяются легкие пузырьки, от которых отпотевают покровные стекла банок. Если длительно напряжение на элементах поддерживается выше 2,3 в, происходит перезаряд батареи вследствие увеличенного тока подзаряда, сопровождающийся чрезмерным выделением газов и значительным осадком шлама, что недопустимо. Недоразряд («при пониженной величине тока подзаряда) имеет место в случае, когда напряжение на элемент устанавливается ниже 2,1 в, и приводит к снижению плотности электролита на 0,01, 0,02 и более по сравнению с нормальной плотностью после полного заряда. Поэтому при обнаружении не до разряда или переразряда следует немедленно принять меры для восстановления нормального режима. Контроль за работой аккумуляторных батарей производится по установленным на щите приборам.
Через элементы, подключенные к элементному коммутатору, но не приключенные к сборным шинам, подзарядный ток не проходит, и они само разряжаются. Во избежание сульфатации этих элементов необходимо периодически, один раз в 15 дней, производить подзаряд их током не выше 10 а, доводя элементы до сильного газовыделителя и устойчивой плотности электролита 1,2-1,21.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *