Опубликовано

Пид регулятор

Символы P&ID и их использование

P&ID диаграммы используют специальные фигуры для представления различных видах оборудования, арматуры, приборов и трубопроводов.

Узнайте, почему Edraw является лучшим выбором программ для создания P & ID: попробуйте БЕСПЛАТНО.

P&ID более сложна, чем схема технологического процесса. Edraw включает в себя более 2000 векторных символов P&ID, используемых для описания механического оборудования, трубопроводов, компонентов трубопроводов, клапанов, драйверов оборудования и контрольно-измерительных приборов. Получите наиболее полную коллекцию символов P&ID из нашей встроенной библиотеки.

Символы P&ID — оборудование

Насосы и резервуары бывают различных конструкций и форм. У вас есть как абстрактные символы, так и имитационные изображения. Изучите базовые знания о трубопроводах и диаграмме приборов.

Насос — это механическое устройство, использующее всасывание или давление для подъема или перемещения жидкостей, сжатия газов или нагнетания воздуха в надувные объекты, такие как шины.

Центробежный насос — это ротодинамический насос, который использует вращающееся рабочее колесо для увеличения силы и давления жидкостей.

Шестеренчатый насос обеспечивает непрерывный, не пульсирующий поток, что делает его идеальным в химических установках.

Масляный насос широко используется для удаления накопленной воды из колодца или другого места.

Вакуумный насос применяется для повышения эффективности систем парового отопления различными способами. Самое важное соображение — быстрое и эффективное удаление.

Винтовой насос — это винтовой насос Archimedes, который до сих пор используется в оросительных и сельскохозяйственных целях.

Резервуар предназначен для хранения технологических жидкостей различного типа в различных технологических условиях.

Луковый резервуар относится к складной раме с открытым верхом, предназначенной для использования в качестве мобильного хранилища при восстановлении загрязняющих веществ.

Компрессор — это механическое устройство, которое принимает среду и сжимает ее до меньшего объема. Механический или электрический привод обычно подключается к насосу, который используется для сжатия среды.

Осевой компрессор широко используется в газовых турбинах, таких как реактивные двигатели, высокоскоростные судовые двигатели и маломасштабные электростанции.

Поршневый компрессор, как правило, используется там, где высокая степень сжатия требуется на сцену без высоких скоростях потока, и жидкость относительно сухой.

Роторный компрессор — это тип газового компрессора, который использует механизм позитивного перемещения роторного типа.

Смешивание — это устройство, которое объединяет некоторые материалы в одно вещество.

Смесительный сосуд — это контейнер, который используется для смешивания нескольких компонентов вместе.

Теплообменник — это устройство, используемое для передачи тепловой энергии между двумя технологическими потоками. Теплообменники передают тепловую энергию через проводящего и конвективного теплообмена.

Охладительные башни передают тепловую энергию наружному воздуху по принципу испарения.

Охладитель — это устройство, контейнер или помещение, которое охлаждает воздух через испарених вод или поддерживает охлаждение воздуха.

Турбинный привод используется для привода насосов и вентиляторов на нефтехимических заводах.

Печь — это устройство для нагрева непрерывного тока воздуха посредством огня.

Котел — это закрытый сосуд, в котором вода или другая жидкость нагреваются.

Масляная горелка разработана с нуля исключительно для сжигания отработанных масел.

Автоматическая кочегарка применяется для подачи горячей воды в системы центрального отопления.

Пластинчатая башня широко используется во многих процессах и в промышленности.

Упакованная башня — это тип упакованного слоя, используемый для выполнения процессов разделения.

Лифт используется для управления положения носа самолета и угла атаки крыла.

Реактор смешения широко используется в химической промышленности для обеспечения перемешивания.

Символы процесса и контрольно-измерительных приборов — Клапаны

Задвижка — устройство, используемое для управления потока жидкостей и газов.

Обратный клапан, также известный как односторонний клапан, предназначен для предотвращения обратной линии среды.

Клапан глобуса — это механизм, используемый для управления или остановки потока жидкости или газа через трубу.

Шаровой кран — это клапан со сферическим диском.

Дроссельный клапан устанавливается между двумя фланцами с помощью отдельного комплекта болтов для каждого фланца.

Угловой клапан ориентирован под углом 90 ° задвижки.

Символы процесса и контрольно-измерительных приборов — Трубопроводы

На технологических схемах используются специальные линии трубопроводов для представления того, как сигналы передаются между оборудованием. Эти символы используются для определения того, как инструменты в процессе соединяются друг с другом, и какой тип сигнала используется. (Электрические, пневматические, данные и т. д.)

Все линии должны быть точными по отношению к трубопроводам технологического трубопровода.

Основной трубопровод используется для подключения оборудования в любом положении.

Основная прямая линия используется для подключения оборудования в том же горизонтальном или вертикальном положении.

Технологическое соединение помогает создать поток процесса между оборудованием. 2 раза нажмите на процессное соединение для редактирования описания.

Символы процесса и инструментария — Инструменты

Диаграмма технологического процесса использует символы и круги для представления каждого инструмента.

Типы этих обозначений инструментов могут легко изменяться при помощью кнопки быстрого действия.

Больше P&ID символов — Моделирование изображений

включает в себя множество реалистичных изображений, позволяющих диаграммы презентационного качества.

Структуры типовых регуляторов (стр. 1 из 2)

Реферат

по дисциплине «Автоматическое управление и средства автоматизации»

на тему «Структуры типовых регуляторов»

Курчатов 2008

Введение

Структуры типовых регуляторов

1. П-регулятор

2. ПД-регулятор

3. ПИ-регулятор

4. ПИД-регулятор

Заключение

Список литературы

Введение

Каждый контур регулирования обобщенно можно рассматривать как систему, состоящую непосредственно из самого объекта регулирования и регулятора, который через исполнительное устройство может влиять на регулируемый параметр объекта.

Каждый регулятор можно охарактеризовать:

– законом, на основе которого осуществляется регулирование;

– типами входных сигналов (первичных датчиков);

– типами выходных сигналов управления (исполнительных устройств);

– способом задания установки регулирования;

– дополнительными возможностями (дополнительные функции, дополнительные входы/выходы).

По закону регулирования они делятся на двух- и трехпозиционные регуляторы, типовые регуляторы (интегральные, пропорциональные, пропорционально-дифференциальные, пропорционально-интегральные и пропорционально-интегрально-дифференциальные регуляторы — сокращенно И, П, ПД, ПИ и ПИД-регуляторы), регуляторы с переменной структурой, адаптивные (самонастраивающиеся) и оптимальные регуляторы.

Рассмотрим структурные схемы автоматических регуляторов с типовыми сервоприводами, воспроизводящие основные законы регулирования методом параллельной и последовательной коррекции.

Структуры типовых регуляторов

1. П -регулятор

Функциональная схема П-регулятора с сервоприводом с пропорциональной или интегральной скоростью перемещения изображена на рис. 1.

Рис. 1. Структурная схема регулятора, состоящего из усилителя, сервопривода и отрицательной обратной связью

Отрицательная обратная связь в регуляторе осуществляется по положению регулирующего органа путем подачи на вход устройства обратной связи сигнала с выхода сервопривода. Конструктивно обратная связь осуществляется с помощью механической, электрической или другой передачи в зависимости от типов сервопривода и командно-усилительного устройства. Характеристики П-регуляторов (операторная и частотная) имеют вид:

Wр (р) = 1 ⁄ Wо.с (р); Wр (iщ) = 1 ⁄ Wо.с (iщ) (1.1)

Для того, чтобы приведенное выше выражение было тождественно уравнению пропорционального регулятора xр = Kр y*, необходимо выполнить условие:

Wо.с (р) = Xо.с (р) ⁄ xр (р) = 1 ⁄ Kр (1.2)

В соответствии с этим условием обратная связь должна выполняться на базе безинерционного усилительного звена. Коэффициент усиления звена обратной связи kо.с = д = 1 ⁄ Kр называют степенью жесткой (т. е. неизменной во времени) обратной связи.

П-регуляторы имеют орган настройки для изменения д (Kр ), который служит параметром его настройки. Переходная характеристика реального П-регулятора (рис. 2) несколько отличается от идеального в начальной своей части из-за ограниченной скорости сервопривода.

Рис. 2. Кривая переходного процесса П-регулятора

2. ПД -регулятор

Функциональная схема ПД-регулятора представлена на рис. 3, а. Дифференцирующая составляющая формируется специальным прибором — дифференциатором, обладающим характеристикой реального дифференцирующего звена. На его выходе формируется сигнал, пропорциональный скорости изменения регулируемой величины.

Рис. 3. ПД-регулятор: а — структурная схема; б — кривая переходного процесса

Скоростной сигнал суммируется с сигналом по отклонению регулируемой величины. Результирующий сигнал поступает на вход усилителя. Усилитель и сервопривод охватываются жесткой отрицательной обратной связью. В замкнутом контуре усилитель— привод — обратная связьформируется П-закон регулирования с коэффициентом усиления Kр . Динамическая характеристика реального ПД-регулятора имеет вид

Переходная (временная) характеристика ПД-регулятора с сервоприводом с ограниченной скоростью изображена на рис. 3, б и представляет собой сумму временных характеристик пропорционального и реального дифференцирующего звеньев. Параметром настройки собственно регулятора служит Kр (степень обратной связи д); параметрами настройки дифференциатора служат коэффициент усиления Кд и постоянная дифференцирования Тд , произведение которых характеризует степень ввода дифференциальной составляющей в ПД-закон регулирования.

3. ПИ-регулятор

Реальные ПИ-регуляторы тепловых процессов имеют два вида функциональных схем (рис. 4). В первом варианте (рис. 4, а) сервопривод охватывается отрицательной обратной связью (ООС) и его характеристика не влияет на формирование закона регулирования, целиком определяемого характеристикой устройства обратной связи. Во втором варианте (рис. 4, б) сервопривод не охватывается обратной связью, и ПИ-закон регулирования формируется охватом обратной связью только усилителя Ку . При этом динамические характеристики регулятора в целом определяются динамическими свойствами цепи, состоящей из последовательно включенных замкнутого контура (Ky —Wo . c ) и сервопривода. Оба варианта структурных схем ПИ-регуляторов используются в их промышленных исполнениях.

Рис. 4. Структурные схемы ПИ-регуляторов:

а — сервопривод охваченООС;б— сервопривод не охвачен ООС

В первом варианте устройство обратной связи должно иметь динамическую характеристику реального дифференцирующего звена

В этом случае регулятор в целом независимо от типа сервопривода воспроизводит динамику ПИ-регулятора

Если принять Тд =Ти и Kр =1/Kд , получим

т.е. передаточную функцию ПИ-регулятора, описываемого также дифференциальными уравнениями и

В промышленных ПИ-регуляторах в качестве обратных связей используют различные устройства: электрические, пневматические и гидравлические. Но все они служат аналогами реального дифференцирующего звена, имеют соответствующие ему динамические характеристики, и называются устройствами гибкой или упругой (изменяющейся во времени) обратной связи.

При втором варианте исполнения ПИ-регулятора (рис. 4, б) возможны два случая: 1) сервопривод имеет характеристику интегрального звена (например, электрический или гидравлический сервопривод с переменной скоростью); 2) сервопривод обладает характеристикой пропорционального звена (мембранный сервопривод с уравновешивающей пружиной). В обоих случаях в соответствии с правилом определения результирующей характеристики двух последовательно включенных звеньев

Wp (p) = WКУУ (p)Wс.п (p), (3.3), гдеWКУУ (p) = 1 ⁄ Wо.с (р).

При использовании сервопривода с передаточной функцией интегрального звена Wс.п (p) = 1⁄ TР передаточная функция регулятора имеет вид

При этом для формирования ПИ-закона с помощью устройства обратной связи необходимо, чтобы выдерживалось соотношение

1/Wо.с (р) = WКУУ (р) = Kр (1+TР ) (3.5)

что обеспечивает обратная связь с оператором

Wо.с (р) = Kо.с /(1+TР ) = д/(1+TР ) (3.6)

Рис. 5. Переходный процесс в устройстве Рис. 6. Переходный процесс ПИ-регулятора обратной связи

Последнее уравнение служит оператором инерционного звена первого порядка. При охвате Ку такой обратной связью оператор регулятора в целом имеет вид

Wр (р) = Kр (1+1/TиР )

Параметрами настройки ПИ-регулятора служат Kр и Ти .

Если сервопривод имеет характеристику пропорционального звена и не охватывается обратной связью (рис. 4, б), то для того, чтобы выполнялось условие (3.2), Wо. c (p) должно быть реальным дифференцирующим звеном.

Постоянная времени ПИ-регулятора Ти численно равна подкасательной Тд к переходной кривой реального дифференцирующего звена (рис. 5).

Промышленные регуляторы имеют специальные приспособления— органы настройки для изменения Kр (д) и Ти в достаточно широких, но ограниченных пределах. Так как подача на вход регулятора ступенчатого сигнала не составляет труда, фактически установленные значения Кр и Tи можно легко определить из его экспериментальной переходной кривой (рис. 6). Наклонный участок OA на кривой объясняется наличием у промышленного ПИ-регулятора сервопривода с конечной (ограниченной) скоростью перемещения выходного вала редуктора. Из этого графика следует, что

Три коэффициента ПИД регулятора и принцип работы

Работа ПИД-регулятора заключается в подаче выходного сигнала о силе мощности, необходимой для поддержания регулируемого параметра на заданном уровне. Для вычисления показателя используют сложную математическую формулу, в составе которой есть 3 коэффициента – пропорциональный, интегральный, дифференциальный.

Возьмем в качестве объекта регулирования ёмкость с водой, в которой необходимо поддерживать температуру на заданном уровне с помощью регулирования степени открытия клапана с паром.

Пропорциональная составляющая появляется в момент рассогласования с вводными данными. Простыми словами это звучит так – берется разница между фактической температурой и желаемой, умножается на настраиваемый коэффициент и получается выходной сигнал, который должен подаваться на клапан. Т.е. как только градусы упали, запускается процесс нагрева, поднялись выше желаемой отметки – происходит выключение или даже охлаждение.

Дальше вступает интегральная составляющая, которая предназначена для того, чтобы компенсировать воздействие окружающей среды или других возмущающих воздействий на поддержание нашей температуры на заданном уровне. Поскольку всегда присутствуют дополнительные факторы, влияющие на управляемые приборы, в момент поступления данных для вычисления пропорциональной составляющей, цифра уже меняется. И чем больше внешнее воздействие, тем сильнее происходят колебания показателя. Происходят скачки подаваемой мощности.

Интегральная составляющая пытается на основе прошлых значений температуры, вернуть её значение, если оно поменялось. Подробнее процесс описан в видео ниже.

А дальше выходной сигнал регулятора, согласно коэффициенту, подается для повышения или понижения температуры. Со временем подбирается та величина, которая компенсирует внешние факторы, и скачки исчезают.

Интеграл используется для исключения ошибок путем расчета статической погрешности. Главное в этом процессе – подобрать правильный коэффициент, иначе ошибка (рассогласование) будет влиять и на интегральную составляющую.

Третий компонент ПИД – дифференцирующий. Он предназначен для компенсации влияния задержек, возникающих между воздействием на систему и обратной реакцией. Пропорциональный регулятор подает мощность до тех пор, пока температура не достигнет нужной отметки, но при прохождении информации к прибору, особенно при больших значениях, ошибки всегда возникают. Это может привести к перегреву. Дифференциал прогнозирует отклонения, вызванные задержками или воздействием внешней среды, и снижает подаваемую мощность заранее.

Настройка ПИД регулятора

Настройка ПИД-регулятора осуществляется 2 методами:

  1. Синтез подразумевает вычисление параметров на основании модели системы. Такая настройка получается точной, но требует глубоких познаний теории автоматического управления. Она подвластна только инженерам и ученым. Так как необходимо снимать расходные характеристики и производить кучу расчетов.
  2. Ручной способ основывается на методе проб и ошибок. Для этого за основу берутся данные уже готовой системы, вносятся некоторые коррективы в один или несколько коэффициентов регулятора. После включения и наблюдений за конечным результатом проводится изменение параметров в нужном направлении. И так до тех пор, пока не будет достигнут нужный уровень работоспособности.

Теоретический метод анализа и настройки на практике применяются крайне редко, что связано с незнанием характеристик объекта управления и кучей возможных возмущающих воздействий. Более распространены экспериментальные методы на основе наблюдения за системой.

Современные автоматизированные процессы реализуются как специализированные модули под управлением программ для настройки коэффициентов регулятора.

Назначение ПИД регулятора

ПИД регулятор предназначен для поддержания на требуемом уровне некой величины – температуры, давления, уровня в резервуаре, расхода в трубопроводе, концентрации чего-либо и т.д., изменением управляющего воздействия на исполнительные механизмы, такие как автоматические регулирующие клапана, используя для этого пропорциональную, интегрирующую, дифференцирующую величины для своей настройки.

Целью использования является получение точного управляющего сигнала, который способен контролировать большие производства и даже реакторы электростанций.

Пример схемы регулирования температуры

Часто ПИД регуляторы используются при регулировке температуры, давайте на простом примере подогрева воды в ёмкости рассмотрим данный автоматический процесс.

В емкости налита жидкость, которую нужно подогреть до нужной температуры и поддерживать её на заданном уровне. Внутри бака установлен датчик измерения температуры – термопара или термометр сопротивления и напрямую связан с ПИД-регулятором.

Для подогрева жидкости будем подавать пар, как показано ниже на рисунке, с клапаном автоматического регулирования. Сам клапан получает сигнал от регулятора. Оператор вводит значение температурной уставки в ПИД-регуляторе, которую необходимо поддерживать в ёмкости.

Если настройки коэффициентов регулятора неверны, будут происходить скачки температуры воды, при этом клапан будет то полностью открыт, то полностью закрыт. В этом случае необходимо рассчитать коэффициенты ПИД регулятора и ввести их заново. Если все сделано правильно, через небольшой промежуток времени система выровняет процесс и температура в ёмкости будет поддерживаться на заданной отметке, при этом степень открытия регулирующего клапана будет находиться в среднем положении.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *