Опубликовано

Конденсаторы переменного тока

Иногда нужно увеличить ёмкость или сопротивление, а подходящих деталей на нужное сопротивление нет, или размеры конструкции не позволяют вставить один большой конденсатор на 3000 мкф.

В этом случае можно набрать необходимые ёмкость или сопротивление из нескольких деталей, а вместо конденсатора на 3000 микрофарад вставить 3 штуки по 1000 микрофарад.

Для увеличения ёмкости конденсаторы соединяются параллельно.

Для увеличения сопротивления резисторы соединяются последовательно.
Вода через трубу с двумя валенками течёт хуже, чем через трубу с одним валенком.

Последовательное соединение — когда детали стоят друг за дружкой, «в очереди», будто за колбасой, потому оно так и называется.

Не путайте эти соединения, для увеличения ёмкости конденсаторы соединяются параллельно, а резисторы для увеличения сопротивления последовательно !

Со сложением ёмкостей и сопротивлений всё легко.

С параллельным соединением резисторов и последовательным соединением конденсаторов слегка посложнее, но к нашему счастью конденсаторы довольно редко соединяют последовательно, а резисторы параллельно.
Последовательное соединение конденсаторов может понадобиться например в сборке гаусс-гана (электромагнитной стрелялки), когда под рукой конденсаторы только на 400 вольт, а нам нужен 800-вольтовый конденсатор, а их редко где найдёшь и они дорогие.

Параллельное соединение резисторов считается вот по какой формуле:

Через три трубы, в которых в каждой по валенку, вода лучше потечёт, чем через одну трубу с одним валенком. Или если в бочке проковырять три дырки, то вода быстрее выльется, чем если бы мы проковыряли одну дырку.

Последовательное соединение конденсаторов считается по той же формуле.

Если два одинаковых конденсатора по 680uF с максимальным напряжением 400В поставить последовательно, то получится конденсатор на 340 uF с напряжением 800 вольт.
Ёмкость уменьшается, зато вырастает максимальное допустимое напряжение, а запасаемая в обеих конденсаторах энергия остаётся та же самая.

> Металлобумажные конденсаторы

Характеристика металлобумажных конденсаторов

Название металлобумажных получили бумажные конденсаторы, в которых в качестве обкладок, вместо фольги, используется тонкий слой металла, нанесённый на бумагу методом испарения в вакууме. При замене фольги тонким слоем металла вследствие явления самовосстановления, свойственного металлизированным конденсаторам, можно изготовлять однослойные металлобумажные конденсаторы. Это позволило уменьшить толщину диэлектрика в два раза и объём конденсатора в 4 раза и толщины обкладок конденсатора до 0,1 мкм. Металлобумажные конденсаторы имеют по сравнению с бумажными конденсаторами меньшие габаритные размеры (при равных номинальных напряжениях и ёмкостях), а по сравнению с электролитическим — обладают меньшими токами утечки, большим сроком службы и лучшей холодоустойчивостью. Недостаток металлобумажных конденсаторов заключается в том, что сопротивление изоляции у них ниже, чем у бумажных, оно уменьшается также при длительном хранении в бездействующем состоянии и с увеличением числа самовосстанавливающихся пробоев.

Металлобумажные конденсаторы с однослойным диэлектриком с номинальным напряжением до 250 В нежелательно применять в цепях с низким напряжением. Металлобумажные конденсаторы в основном применяют в цепях развязок, блокировок и фильтров. Постоянная времени (то есть время, которое необходимо для того, чтобы напряжение на выводах конденсатора уменьшилось) металлобумажных конденсаторов при 25 єС составляет от 250 до 2000 МОммкФ, то есть обычно в 6-10 раз меньше, чем у обычных фольговых.

Рисунок 4.1 Конденсаторы металлобумажные

Металлизация диэлектрика

Устранение недостатков, связанных с наличием зазора между диэлектриком и обкладкой, можно осуществить с помощью металлизации диэлектрика, то есть непосредственным нанесением тонкого слоя металла на поверхность материала, используемого в качестве диэлектрика в конденсаторе. При этом достигается значительная экономия металла, так как металлический слой на поверхности диэлектрика может иметь значительно меньшую толщину, чем металлическая фольга. Для металлизации диэлектриков были предложены следующие методы: химический, вжигание, испарение в вакууме и катодное распыление. При металлизации органических диэлектриков, имеющих вид длинных тонких лент, намотанных в рулоны, имеется возможность вести процесс, непрерывно пропуская движущуюся ленту над испарителем до тех пор, пока с отдающего рулона исходной ленты весь материал не будет перемотан на приёмный рулон металлизированной ленты. После этого надо снять вакуум, вынуть из установки рулон металлизированного материала и поставить на металлизацию новый рулон ещё не металлизированной бумаги. В качестве металла для металлизации бумаги, в основном, выбирают алюминий. Так как он устойчив к коррозии и окислению. В связи с тем, что бумага, металлизированная алюминием, допускает длительное хранение, оказывается возможным ставить процесс металлизации непосредственно на бумажной фабрике и использовать в конденсаторостроении готовую металлизированную бумагу. Преимуществом алюминия также является меньшая величина удельного сопротивления. При покрытии алюминием не нужен подслой из другого металла. Недостатками, связанными с металлизацией алюминием являются: повышенный расход энергии на испарение металла в связи с его повышенной температурой кипения и необходимостью работать при высоком вакууме. Кроме того, при высокой температуре алюминий активно реагирует с большинством нагревостойких материалов, которые могли бы быть использованы для изготовления тиглей для плавки и испарения этого металла.

Эту задачу удалось решить только при отказе от использования тиглей и переходе к стрежневым нагревателям, на которые непрерывно подаётся алюминиевая проволока, которая плавится и испаряется, соприкасаясь с нагревателем; последний приходится периодически заменять, так как он постепенно разрушается при соприкосновении с алюминием. Обычно для металлизации применяется широкая лента, которая затем при перемотке разрезается на более узкие с таким расчётом, чтобы с одного из краёв ленты оставалась бы неметаллизированная закраина. Обычно применяется односторонняя металлизация. В этом случае при намотке конденсатора из двух лент они располагаются таким образом, чтобы на одной ленте закраина была сдвинута к одному краю ленты, а на второй ленте — к противоположному краю. На торцы намотанных секций наносятся путём распыления проводящие накладки из сплавов, контактирующие с металлическими слоями каждой из лент. К накладке на каждом торце припаивают выводной проводник. При металлизации бумаги алюминием для получения надёжного контакта перед нанесением накладки из сплава производится предварительное напыление на торцы конденсаторных секций слоя цинка.

Рисунок 4.2 Секция металлобумажного конденсатора. 1- первая лента металлизированной бумаги; 2-закраина цервой ленты; 3-вторая лента металлизированной бумаги; 4-закраина второй ленты; 5- контактная накладка, соединенная с металлическим слоем первой ленты; 6-припаянный к этой накладке выводной проводник;7-накладка, контактирующая с металлом второй ленты; 8- вывод от этой накладки.

При замене обкладок из фольги тонким слоем металла, в конденсаторе могут возникать явления, которые не наблюдались при обкладках из фольги: явление мерцания ёмкости (у слюдяных и керамических конденсаторов с серебряными обкладками) и явление самовосстановления конденсатора при пробое.

БУМАЖНО-МАСЛЯНЫЕ КОНДЕНСАТОРЫ

1.8.27 . Бумажно-масляные конденсаторы связи, отб ора мощности, делительные конденсаторы, конденсаторы продольной компенсации и конденсаторы для повышения коэффициента мощности испытываются в объеме, предусмотренном настоящим параграфом; конденсаторы для повышения коэффициента мощности напряжением ниже 1 кВ — по пп. 1, 4, 5; конденсаторы для повышения коэффициента мощности напряжением 1 кВ и выше — по пп. 1, 2, 4, 5; конденсаторы связи, отбора мощности и делительные конденсаторы — по пп. 1 — 4.

Табли ц а 1.8.28 . Н аибольшее допустимое отклонение емкост и конденсаторов

Наименование или тип конденсатора Допустимо е отклонение, %
Конденсаторы для повышения коэффициента мощности напряжением:
до 1050 В ± 10
выше 1050 В +10
— 5
Конденсаторы типов:
С МР-66 / , СМР-110 / +10
— 5
С МР-166 / , СМР-13 3 / , О МР-15 ± 5
Д МР- 80, ДМРУ- 80, Д МРУ-6 0, Д МРУ-55, ДМРУ-110 ± 10

Таблица 1.8.29. Испытательное напряжение промышлен н ой частоты ко нденсаторов для повышения коэффицие нта мощности

Испытуема я и золяц ия Испытательное напряжение, кВ, для конденсаторов с рабочим напряжением, кВ
0,22 0,38 0,50 0,66 3,15 6,30 10,5 0
Между обкладками 0,42 0,72 0,95 1,25 5,9 11,8
Относительно корпуса 2,1 2,1 2,1 5,1 5,1 15,3 21,3

Таблица 1.8.30. Испытатель н ое напряжение промышлен ной частоты для конде нсаторов связи, отбора мощности и делительных конденсаторов

Тип конд е нсатора Испытат ельное напряже ние элементов конденсатора, к В
СМР-66 /
СМР-110 / 193,5
СМР-166 / 235,8
ОМР-15 49,5
ДМР-80, ДМРУ-80, ДМРУ-60, ДМРУ-55
ДМРУ-110

1 .Измерение сопрот ивления изоляц ии. Прои зводится мегаомметром на напряжение 2,5 кВ. Сопротивление изоляции между выводами и относительно корпуса конденсатора и отношен ие R 60 / R 15 не нормируются.

2 .Измерение емкост и. Производится при температуре 15 — 3 5 ° С. Измер енная емкость должна соответствовать паспортным данным с учетом погрешности измерения и приведенных в табл. 1.8.28 . допусков.

Таблица 1.8.31. Испытат е льное напряжение для ко нде нсаторов продольной компенсаци и

Тип конденсатора Испы тательное напряжение, кВ
про мышленной частоты относительно корпуса постоянного ток а между обкладками конденсатора
КПМ-0,6 -50-1 16,2 4,2
К ПМ-0,6-25-1 16,2 4,2
КМП-1-50-1 16,2 7,0
КМП-1-50-1-1 7,0

3 .Измерение тангенса угла диэлектрических потерь. Производится для конденсаторов связи, конденсаторов отбора мощности и делите льных конденсаторов. Измеренные значения тангенса угла диэлектрических потерь для конденсаторов всех типов при температуре 15 — 35 ° С не должны превышать 0,4 %.

4 .Испытание повышенным напряжением. Испытательные напряжения кон денсаторов для повышения коэффициента мощности приведены в табл. 1.8.29 ; для конденс аторов связи, конденсаторов отбора мощности и делительных конденсаторов — в табл. 1.8.30 и кон денсаторов продольной компенсации — в табл. 1.8.31 .

Продолжительность приложения испытательного напряжения 1 мин.

При отсутствии источника тока достаточной мощности испытания повышен ным напряжением промышленной частоты могут быть замен ены испытан ием выпрямленным напряжением удвоенного значения по отношению к указанному в табл. 1.8.29 — 1.8.31.

Испытание повышенным напряжением промышленной частоты относительно корпу са изоляции конденсаторов, предназначенных для повышения коэффициента мощности (или конденсаторов продольной компенсации) и имеющих вывод, соединен ный с корпусом, не производится.

5 .Испытание батареи конде нсаторов трехкратным включе нием.Производится включением на номинальное напряжение с контролем значений токов по каждой фазе. Токи в различных фазах должны отличаться один от другого не более чем на 5 %.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *