Опубликовано

Каковы основные достоинства цифровых измерительных приборов

Цифровые измерительные приборы (общие сведения)

Цифровыми называются электроизмерительные приборы, преобразующие определяемую аналоговую величину в кодированный сигнал и представляющий результаты измерения в виде цифрового значения на отсчетном устройстве.

В соответствии с определением цифровые измерительные приборы (ЦИП) состоят из аналого-цифровых преобразователей (АЦП) и цифровых отсчетных устройств (ЦОУ). Результаты преобразования АЦП, в виде кода могут подаваться на регистрирующие или вычислительные приборы.

Иногда, в качестве преобразователя выступают цифро-аналоговые преобразователи, представляющие сигнал в виде аналоговой квантованной величины. ЦОУ отображает результат в виде цифр с заданным количеством разрядов.

В основе цифровых электрических измерений заложено аналого-цифровое преобразование (кодирование), которое заключается в присвоении дискретного значения (кода) искомой величине с определенным шагом по времени.

Процесс дискретизации аналоговой величины пояснен иллюстрацией. Преобразователь за каждый промежуток времени t вырабатывает сигнал определенной величины, соответствующий величине измеряемого сигнала.

Разницу между значениями t1 и t2, t2 и t3 и т. д. называют шагом дискретизации. Фиксированные значения Х1, Х2, Х3 и т. д. называют уровнями квантования, а разница между соседними значениями Х называется ступенью квантования или квантом

Чем меньше ступень квантования, тем ближе и точнее дискретный сигнал будет соответствовать аналоговой измеряемой величине.

Код в ЦИП выдается в соответствии с квантованным значением Х, принимаемым равным определяемой величине. При преобразовании аналоговой величины в квант, большое значение имеет правило отождествления измеряемой и квантованной величины.

На практике применяются следующие правила отождествления: с ближайшим большим или равным значением, с ближайшим меньшим или равным значением, с ближайшим значением.

На графике четко видно, что ни в один момент времени измеряемая аналоговая величина не совпала с фиксированным значением квантования. Это означает, что АЦП будет присваивать код по одному из вышеперечисленных правил.

Число уровней квантования определяется устройством приборов, от этого числа зависит число возможных отсчетов.

Для примера, если максимальное значение отсчетного устройства составляет 9999, это значит, что бесконечное количество значений аналоговой измеряемой величины в пределах от 0 до 9999 может быть представлено десятью тысячами различных показаний. ЦИП в данном случае имеет 10000 уровней квантования.

В результате квантования появляется погрешность дискретизации. На рисунке аналоговая величина в момент времени t1 имеет промежуточное значение между Х3 и Х4. АЦП в соответствии с одним из правил отождествления присвоит для времени t1 допустим значение Х4. Разница между фактической величиной и значением Х4 это и есть погрешность дискретизации.

Иногда, по значениям, полученным с помощью дискретизации сигнала, возникает необходимость восстановить все уровни измеряемой аналоговой величины. Практически это всегда выполняется с погрешностью, которую называют погрешностью аппроксимации.

АЦП преобразует входную величину в код одним из следующих методов: метод последовательного счета, последовательного приближения и метод считывания.

Метод последовательного счета заключается в последовательном во времени сравнении измеряемой величины Х с известной квантованной величиной Хк, изменяющейся во времени скачками.

Каждый скачок составляет один уровень квантования. АЦП выдает код соответствующий числу ступеней квантования, при котором наступает равенство с измеряемой величиной.

При инверсном преобразовании происходит сравнение известной квантованной величины с измеряемой квантованной величиной, функционально связанной с входным сигналом.

Метод последовательного приближения заключается в сравнении квантованной величины с известной квантованной величиной, изменяющейся во времени скачкообразно по определенному закону.

При совпадении этих величин, происходит отождествление по одному из правил, в соответствии с этим значением выдается код преобразования.

Метод считывания заключается в одновременном сравнении измеряемой величины со всеми доступными уровнями квантования. Код выдается в соответствии с отождествленным уровнем квантования.

Основными достоинствами цифровых приборов являются:

— возможность их сочетания с другими устройствами;- отсутствие возможности неправильного трактования результатов измерения;- возможность автоматизации процесса измерения;- высокое быстродействие цифровых измерений;- возможность передачи кодированных сигналов на расстояние.

К основным недостаткам ЦИП следует отнести сложность устройства, и как следствие — относительно невысокую надежность приборов и сравнительно высокую стоимость.

Рекомендуем купить цифровой осциллограф для диагностики автомобиля в Москве у компании ООО ПК ТехАвто.

Генератор образцовых частот

Использована широко распространенная схема генератора на цифровых элементах, которая при всей своей простоте обеспечивает набор необходимых рабочих частот с хорошей точностью и стабильностью, не требуя при этом никаких настроек.

Рисунок 1. Генератор 1 МГц с делителями частоты.

Генератор на микросхеме К561ЛА7 (или ЛЕ5) синхронизирован кварцевым резонатором в цепи обратной связи, определяющим частоту сигнала на его выходе (выводы 10, 11), равную в данном случае 1 МГц (Рисунок 1). Сигнал генератора последовательно проходит через несколько каскадов делителей частоты на 10, собранных на микросхемах К176ИЕ4, СD4026 или любых других. С выхода каждого каскада снимается сигнал с частотой в десять раз меньшей входной частоты. C помощью любого переключателя на шесть положений сигнал с генератора или с любого делителя можно вывести на выход. Правильно собранная из исправных деталей схема работает сразу и не нуждается в настройке.. Конденсатором С1 при желании можно в небольших пределах подстраивать частоту. Схема питается напряжением 9 В.

Модуль измерения L, C

Схема каскада для измерения емкости неполярных конденсаторов и индуктивностей показана на Рисунке 2. Входной сигнал подается непосредственно с выхода переключателя диапазонов измерений (SA1 на Рисунке 1). Сформированный прямоугольный импульсный сигнал, поступающий на выход «F» через ключевой транзистор VT1, можно использовать для проверки или настройки других устройств. Уровень выходного сигнала можно регулировать резистором R4. Этот сигнал подается также на измеряемый элемент – конденсатор или индуктивность, подключенные, соответственно, к клеммам «C» или «L», при этом переключатель SA2 устанавливается в соответствующее положение. К выходу «Uизм.» подключается непосредственно измерительная головка (возможно, через добавочное сопротивление; см. ниже «Модуль индикации»). Резистор R5 служит для установки пределов измерений индуктивностей, а R6 – емкостей. Для калибровки каскада к клеммам «Сх» и «Общий» на диапазоне 1 кГц подключаем образцовый конденсатор 0.1 мкФ (см. схему на Рисунке 1) и подстроечным резистором R6 устанавливаем стрелку прибора на конечное деление шкалы.

Рисунок 2. Модуль измерения емкости и индуктивности.

Затем подключаем конденсаторы, например, емкостью 0.01, 0.022, 0.033, 0.047, 0.056, 0.068 мкФ и делаем соответствующие метки на шкале. После чего таким же образом калибруем шкалу индуктивностей, для чего на этом же диапазоне 1 кГц подключаем к клеммам «Lx» и «Общий» образцовую катушку индуктивностью 10 мГн и подстроечным резистором R5 устанавливаем стрелку на конечное деление шкалы. Впрочем, калибровать прибор можно и на любом другом диапазоне (например, при частоте 100 кГц или 100 Гц), подключая в качестве образцовых соответствующие емкости и индуктивности, согласно выбранному диапазону.

Напряжение питания каскада (Uпит) – 9 В.

Модуль измерения электролитических конденсаторов (+C и ESR)

Модуль представляет собой микрофарадометр, в котором определение емкости производится косвенным образом путем измерения величины напряжения пульсаций на резисторе R3, которое будет меняться обратно пропорционально емкости периодически перезаряжаемого конденсатора. Можно измерять емкости оксидных (электролитических) конденсаторов в диапазонах 10–100, 100–1000 и 1000–10000 мкФ.

Измерительный узел для электролитических конденсаторов собран на транзисторе Т1 (Рисунок 3). На вход (R1) подается сигнал непосредственно с выхода генератора-делителя (схема на Рисунке 1), включать который можно параллельно предыдущему модулю. Резистор R1 подбираем в зависимости от типа использованного транзистора Т1 и чувствительности используемой измерительной головки. Резистор R2 ограничивает ток коллектора транзистора в случае короткого замыкания в проверяемом конденсаторе. В отличие от других модулей, здесь требуется пониженное стабильное питание 1.2 – 1.8 В; схема стабилизатора на такое напряжение будет приведена ниже на Рисунке 6. Следует отметить, что при измерениях полярность подключения конденсатора к клеммам «+Сх» и «Общий» не имеет значения, а измерения можно выполнять, не выпаивая конденсаторы из схемы. Перед началом измерений резистором R4 стрелка устанавливается на нулевую отметку (конец шкалы).

Рисунок 3. Модуль измерения ESR и емкости электролитических конденсаторов.

Перед началом измерений (при отсутствии измеряемого конденсатора «+Сх») резистором R4 стрелка устанавливается на нулевую отметку (конечное деление шкалы). Калибровка шкалы «+Сх» может производиться на любом диапазоне. Например, переводим переключатель SA1 в положение, соответствующее частоте 1 кГц. С помощью R4 устанавливаем стрелку прибора на «0» (конец шкалы) и, подключая к клеммам «+Сх» и «Общий» образцовые конденсаторы емкостью 10, 22, 33, 47, 68 и 100 мкФ, делаем соответствующие отметки на шкале. После этого на других диапазонах (10 Гц и 100 Гц) эти же отметки будут соответствовать емкостям с номиналами в 10 и 100 раз бóльшими, то есть, от 100 до 1000 мкФ (100, 220, 330, 470, 680 мкФ) и от 1000 до 10000 мкФ, соответственно. В качестве образцовых здесь можно использовать танталовые оксидно-полупроводниковые конденсаторы, имеющие наиболее стабильные во времени параметры, например, типов К53-1 или К53-6А.

Узел измерения ESR содержит отдельный генератор 100 кГц, собранный на микросхеме 561ЛА7 (ЛЕ5) по такой же схеме, как и основной генератор на Рисунке 1. Здесь особой стабильности не требуется, и частота может быть любой от 80 до 120 кГц. От величины последовательного эквивалентного сопротивления подключенного к клеммам конденсатора зависит ток, протекающий через обмотку I трансформатора (намотан на ферритовом кольце диаметром 15 – 20 мм). Марка феррита роли не играет, но, возможно, число витков первичной обмотки нужно будет подкорректировать. Поэтому лучше сначала намотать обмотку II, а первичную – поверх нее. Выпрямленное постоянное напряжение после диода VD5 подается на измерительную головку (модуль индикации на Рисунке 4). Диоды VD3, VD4 ограничивают возможные броски напряжений для защиты стрелочной головки от перегрузки. Здесь полярность подключения конденсатора также не важна, и измерения можно проводить непосредственно в схеме.

Пределы измерения можно менять в широких пределах подстроечным резистором R5 – от десятых долей Ома до нескольких Ом. Но при этом следует учитывать влияние сопротивления проводов от клемм «ESR» и «Общий». Они должны быть как можно короче и большого сечения. Если этот модуль будет расположен вблизи с другим источником импульсных сигналов (например, рядом с генератором Рисунок 1), возможен срыв генерации узла на микросхеме. Поэтому узел измерения «ESR» лучше собрать на отдельной небольшой плате и поместить в экран (например, из жести), соединенный с общим проводом.

Рисунок 4. Структурная схема измерителя.

Для калибровки шкалы «ESR» подключаем к клеммам «ESR» и «Общий» резисторы сопротивлением 0.1, 0.2, 0.5, 1, 2. 3 Ом и делаем соответствующие отметки на шкале. Чувствительность прибора можно регулировать изменением сопротивления подстроечного резистора R5.

Питание измеритель ESR, так же, как и остальные схемы модуля, напряжением 9 В.

Дополнения

Составной транзистор Т1 (схема Рисунке 3) при необходимости можно заменить узлом из двух транзисторов меньшей мощности, а в источнике питания 1.4 В можно использовать простой стабилизатор на одном транзисторе. Как это сделать, показано на Рисунках 5 и 6. Функцию стабилитрона здесь выполняют кремниевые диоды VD1-VD3 с суммарным прямым падением напряжения порядка 1.5 В. Включать диоды, в отличие от стабилитрона, нужно в прямом направлении.

Рисунок 5. Замена КТ829Г.

При желании можно дополнить прибор модулем для быстрой проверки транзисторов. С его помощью можно проверять любые биполярные транзисторы, а также полевые транзисторы малой и средней мощности. Причем биполярные транзисторы и, в ряде случаев, полевые, можно проверять без выпаивания их из схемы. Представленная на Рисунке 7 схема представляет собой комбинацию мультивибратора и триггера, где вместо резисторов нагрузки в коллекторные цепи транзисторов мультивибратора включены транзисторы с идентичными параметрами, но противоположной структуры (VT2, VT3). Резисторы R6, R7 задают необходимое напряжение смещения рабочей точки проверяемого транзистора, а R5 ограничивает ток через светодиоды и определяет яркость их свечения.

Рисунок 6. Стабилизатор низковольтный.

В зависимости от типа используемых светодиодов, возможно, придется подобрать сопротивление R5, ориентируясь на оптимальную яркость их свечения, или же поставить дополнительный гасящий резистор в цепь питания 9 В. Следует заметить, что эта схема работает с питающим напряжением, начиная от 2 В. Когда к клеммам «Э», «Б», «К» ничего не подключено, оба светодиода мигают. Частоту мигания можно подстраивать, меняя емкости конденсаторов С1 и С2. При подключении к клеммам исправного транзистора один из светодиодов погаснет, в зависимости от типа его проводимости – p-n-p или n-p-n. Если транзистор неисправен, оба светодиода будут мигать (внутренний обрыв) или оба погаснут (замыкание). Помимо клемм «Э», «Б», «К» на самом приборе (клеммная колодка, «фрагмент» панельки под микросхемы и прочее), можно параллельно им вывести из корпуса на проводах соответствующие щупы для проверки транзисторов на платах. При испытаниях полевых транзисторов клеммы «Э», «Б», «К» соответствуют выводам «И», «З», «С».

Рисунок 7. Схема для проверки транзисторов.

Следует учесть, что полевые транзисторы или очень мощные биполярные все-таки лучше проверять, выпаяв из платы.

При измерениях номиналов любых элементов непосредственно на плате следует обязательно отключить питание схемы, в которой производятся измерения!

Прибор занимает мало места, умещаясь в корпусе 140×110×40 мм (см. фото справа в начале статьи) и позволяет с достаточной для радиолюбителей точностью проверять практически все основные типы радиокомпонентов, чаще всего используемых на практике. Прибор без нареканий эксплуатируется в течение нескольких лет.

Стрелочный тестер — модернизация омметра

Стрелочный тестер — в ряде ситуаций цифровые омметры (мультиметры) не могут заменить стрелочных приборов. Однако и у них имеются спои недостатки и недоработки, о устранении которых, на примере омметра М410701, и пойдет речь в данной статье. Проверка p-n-переходов популярными цифровыми тестерами серий 8300 и 8900 практически невозможна. Исключение сос!авлню1 лишь пробитые или оборванные переходы. А выявление более «тонких» дефектов у полупроводниковых приборов указанными мультиметрами проблематично. К тому же, цифровым приборам свойственна задержка при считывании их окончательных показаний. Это резко снижает производительность труда, особенно при оперативной проверке большого количества комплектующих.

Простота в ремонте

В плане ремонтопригодности цифровой прибор сложнее, чем стрелочный тестер. Поэтому многие радиолюбители, наряду с цифровыми мультиметрами, широко используются и стрелочные. Цифровые мультиметры идеальны, когда требуется точный подбор резисторов. Пожалуй, на эгом их преимущества и заканчиваются. Когда грубо оцениваем переходное сопротивление контактов, то стрелочные омметры лучше. Сразу видна динамика процесса, т.е. зависимость сопротивления контактов реле или выключателя, в зависимости от прижима. Цифровой омметр при быстром изменении сопротивления разочарует скачками своих показаний.

Автор часто использует стрелочный тестер сопротивления М410701. Однако у него есть ряд недостатков. И все их однажды решили полностью устранить. Рассмотрим эти недостатки подробнее, так как они свойственны большинству заводских стрелочных приборов.
Во-первых, большое неудобство при частом измерении на разных поддиапазонах. Переключатель поддиапазонов, как таковой, отсутствует. На корпусе омметра установлено много клемм-гнезд. При изменении поддиапазона требуется всякий раз вынимать штекер из гнезда и вставлять в другое гнездо, что даже утомительно. Чем чаще пользуемся, тем больше неудобств. Хуже всего при работе на первом пределе (х0.01). Конечная отметка шкалы соответствует 300 Ом.

Надежные контакты соединений

На этом пределе проверяются все p-n-переходы в прямо-смещенном состоянии. Оцениваются все контактные соединения, в первую очередь на переходное сопротивление. Главная проблема в том, что в таком приборе «разбалтываются» входные клеммы (по вине штекеров). Их регулярно нужно разжимать, иначе показания прибора становятся неустойчивыми. К сожалению, во многих серийных приборах используется именно такое конструктивное исполнение, и переключатель диапазонов по предусмотрен.

Второй недостаток

Как только изменяем поддиапазон измерения, требуется изменять положение ручки-регулятора для установки «нуля». При возврате на прежний предел измерения, снова необходимо крутить эту же ручку регулятора. А она здесь одна единственная. И это притом, что на каждом поддиапазоне — «свой ноль». Нельзя не отметить, что такой недостаток имеет и стрелочный тестер сопротивления.

Третий недостаток

В данном приборе применяется мало распространенный гальванический элемент, и его всегда было сложно приобрести. По длине он значительно короче, чем типоразмер ААА или АА.

Четвертый недостаток

Для работы на поддиапазоне 0…30 МОм нужен дополнительный источник постоянного напряжения 230 В, но подключать его неудобно. Нужно решать и этот вопрос.

Отметим следующее: стрелочный тестер для измерения сопротивления с таким источником напряжения дают новые возможности. Они совершенно недостижимы для обычных омметров. Ведь у них напряжение питания не превышает нескольких вольт. Многие современные мультиметры имеют диапазон измерения 20…200 МОм. Однако реально на нём работать нельзя. Ни одним цифровым омметром из серии 8300 или 8900 вы не оцените качество диэлектрика даже низковольтного неэлектролитического конденсатора.

Разве что, когда он будет явно пробит. Совсем иное дело с омметром М410701 при его работе на пределе 30 МОм. Благодаря использованию при этом напряжения 230 В легко обнаруживаются скрытые дефекты в конденсаторах. Очень важно, чтобы при измерениях ток через испытуемый конденсатор ограничен на безопасном для него уровне и конденсатор не выходит из строя. Получается фактически метод неразрушающего контроля. Утечки токов, совершенно не диагностируемые обычными мультиметрами, в этом случае, мгновенно себя обнаруживают.

Доработка прибора

Для устранения всех вышеперечисленных недостатков стрелочный тестер М410701 был доработан. Модернизацию проводили согласно рис.1. В конструкцию установили двухсекционный переключатель SAI и три дополнительных подстроечных резистора R12, R13 и R14. Все обозначения элементов сохранили свои позиционные обозначения. Вновь введенные элементы продолжают нумерацию схемы прибора. Дополнительная секция переключателя SA1.1 избавила навсегда от проблемы штекеров и гнезд. Предпочтение отдали переключателю клавишного типа. Он удобнее при работе, чем галетные переключатели. У последних есть серьезный недостаток: галетник имеет десятки позиций.

Чтобы установить нужную позицию требуется пройти много промежуточных. При этом быстро изнашиваются контакты такого галетника- это одна из основных причин отказа оснащенных таким переключателем мультиметров. Вторая секции переключателя SA1.2 позволила устранить проблему обязательной перестройки нуля при любом переключении диапазонов. Теперь каждый поддиапазон имеет свой отдельный подстроечный резистор. И постоянные подстройки «нуля» уже не нужны. На диапазоне 300 Ом ручку регулятора приходится крутить чаще всего. Поэтому штатный регулятор R11 использован для этого диапазона. После установки SA1 щупы закрепили на одном месте.

Входные контакты

Их припаяли прямо к гнездам. Так избавились от проворачивания штекеров в гнездах. Следовательно, исключили проблему разшатывания / разбалтывания входных контактов. Сложнее всего оказалось избавиться от дефицитной (по типоразмеру) батарейки. Приспособить штатный отсек стрелочного тестера под новые батарейки невозможно. По длине он короче, чем типоразмер АА или даже ААА. Ничего не оставалось, как применить новый отсек питания. От элементов ААА пришлось отказаться, т.к. они в омметре слишком быстро садятся. Дело в том, что на пределе 300 Ом ток через измеряемую цепь превышает 50 мА. Поэтому первоначально использовали дисковый Ni-Cd аккумулятор Д-0.55.

Для его установки потребовалось разрушить днище старого отсека питания. Пластмасса хорошо удаляется горячим паяльником. Чтобы стрелочный тестер продолжал нормально функционировать, в схему нужно внести изменения. Иначе, при питании от напряжения 1.2 В невозможно будет выставлять нули на пределе 300 Ом. Поэтому параллельно резистору R5 припаивали резистор 10 Ом (типа МЛТ-1). Однако у Ni-Cd аккумуляторов большой саморазряд, и его напряжение быстро изменяется, к тому же за аккумулятором нужен уход и контроль. Все это мешает в работе. Так, пришли к решению использовать самую большой по типоразмеру батарейку, которая, по энергоемкости, сюда подходит идеально.

Работа от одной батарейки

Уже потом убедились, что одной такой батарейки хватает на несколько лет (!) работы омметра. Для крепежа большой батарейки нужного отсека нигде не было, и его пришлось изготовлять самостоятельно. Он выполнен в виде металлического корпуса из луженой жести толщиной 0.55 мм. Размеры корпуса-отсека 80x38x38 мм, и он прикреплен к корпусу омметра двумя винтами МЗ и спаян изнутри. В качестве SA1 установлен переключатель П2К. В омметре нет свободного пространства для его размещения.

В связи с этим для переключателя также был изготовлен корпус-футляр спаянный из отрезков двустороннего стекло-текстолита. Размеры футляра 129x20x40 мм. Благодаря футляру нашлось место для установки гнезда для подключения постоянного напряжения 230 В. Как П2К, так и футляр батарейки закреплены на корпусе омметра винтами МЗ. Для этого соответствующие гайки припаяны к стенкам обоих футляров. Аналогично устроен и крепеж съемной крышки для батарейки. Данный стрелочный тестер имеет встроенный микроамперметр типа М42304 с током полного отклонения 50 мкА.

Самостоятельное изготовление

Рассмотренный стрелочный тестер несложно изготовить и самостоятельно. Сразу можно отвести часть корпуса под большую батарейку, чтобы избежать изготовления футляров. Прецизионные резисторы несложно составить параллельным и последовательным соединением нескольких экземпляров точных резисторов с допуском ±0.5% или ±1%. Блок питания для получения постоянного напряжения 230 В несложный конструктивно. Самое важное здесь — трансформатор. Мною был использован трансформатор и корпус от сетевого адаптера азиатского производства. Вторичная обмотка трансформатора удалена и намотана заново.

Трансформатор

Такой трансформатор может быть практически любым другим, обеспечивающим после выпрямителя напряжение 230 В. Ток в нагрузке выпрямителя очень мал. Максимальная нагрузка выпрямителя не менее 2 МОм. Поэтому ток не превышает 120 мкА. Так что габаритная мощность сетевого трансформатора здесь не имеет никакого значения. Вторичная обмотка может быть намотана тонким проводом (0.07 мм и даже меньше). С успехом можно применять также диодно-конденсаторные схемы умножения напряжения.

В этом случае можно использовать трансформаторы на меньшее напряжение. Например, если применять схему выпрямителя с удвоением напряжения, то подходит трансформатор с вторичной обмоткой на 100…120 В. Такой трансформатор менее дефицитный.
Выпрямитель — диодный мост КЦ407А. Вместо него можно использовать импортный мост типа W08, 2W08 или четыре диода типа 1 N4007. На выходе выпрямительного моста установлен фильтрующий конденсатор. Использован не электролитический конденсатор емкостью 0.5 мкФ на рабочее напряжение 630 В. Его тип не критичен, например, К73-17.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *