Опубликовано

Как сделать правильно заземление

Типы заземлений

В старых домах прокладывали TN-С-заземление – тип глухозаземленной нейтрали, с совмещением PEN-проводника на всей длине линии (защитное зануление). Система применялась при строительстве жилых многоэтажных домов до 1998 г. Если в квартире в электропроводке два провода, то заземление типа TN-С. Защитного ноля в таких схемах нет.

Контур заземления находится на подстанции (ТП). Из ТП на вводно-учетное устройство приходит сеть с совмещенным PEN-проводником. При подключении новых электроприборов, требующих заземления (бойлеры, кондиционеры, ноутбуки, персональные компьютеры и др.), существует высокая вероятность поражения электрическим током, т.к. защиты нет.

Для защиты от поражения электрическим током используются УЗО. Но в качестве единственного защитного мероприятия не могут применяться. По новым стандартам ПУЭ такие системы должны быть переоборудованы в TN-С-S или TN-S с применением системы уравнивания потенциалов.

Запрещается самостоятельно делать отдельный заземляющий контур для квартиры. В таких случаях высока вероятность появления блуждающих токов. Присоединять контур квартиры можно только к общедомовому ЗУ, т.е. при реконструкции в старом доме нужно полностью переделать схему заземления.

Присоединять заземляющие выпуски к инженерным сетям – трубам горячего и холодного водоснабжения, канализации запрещено, т.к. в этом случае возможно появление опасного потенциала. При коротком замыкании из-за появления токов возрастает большая вероятность возникновения пожара.

TN-S является самой качественной системой заземления. Согласно требованиям ПУЭ, новые застройки с 1997 г. должны были иметь TN-S-заземление. PE,- и N-проводники разделены по всей длине линии от источника электропитания (отходящего автомата в РУ-0,4кВ на подстанции) до потребителя.

Строительство TN-S-заземления дорогостоящее. Ввиду этого для реконструкции старых сетей (при удаленном источнике электропитания) не применяется.

TN-С-S системы возводятся в новых постройках. К вводным щитам зданий подходят линии с совмещенными PE,- и N-проводниками. Здесь происходит разделение PE и N. К подъездным щиткам приходит уже разделенная линия. Такое разделение является достаточно надежным. При этом стоимость строительно-монтажных работ намного ниже, чем при сооружении TN-S-системы.

Применение устройства защитного отключения (УЗО) в системе TN-С-S

Розеточные цепи и сеть освещения должны быть разделены. В противном случае при выходе из строя и необходимости выполнить ремонт одной точки электропроводки (бытового выключателя, розетки и др.), остальной частью бытовой электросети пользоваться будет запрещено, подключать электроинструменты нужно к электрическому щитку.

Нагрузки разного характера (стиральные машины, электроплиты, котлы, бойлеры, конвекторы и др.) должны быть подключены под отдельный автомат (УЗО), для чего используется модульное оборудование.

Запрещено подключать фазные провода к приборам учета и автоматам на один зажим. Наиболее целесообразным является подключение между собой элементов электросети шиной. Это гарантирует равномерность нагрузки.

Подключение проводов в электрощите

Нельзя соединять между собой проводники ввода разного сечения. Сначала необходимо провести необходимые расчеты сечений проводников. Если к вводно-учетному устройству подходит проводник сечением 16, то увеличение (уменьшение) недопустимо, т.к. выбранное сечение обеспечивает нормальный режим работы сети электроснабжения.

Полезно знать:

  • качественная система заземления включает в себя присоединение всех электроприборов в квартире;
  • для лучшего контакта следует использовать клеммы, скрутки недопустимы;
  • на время производства работ всегда необходимо отключать электропитание в квартире;
  • розетки должны иметь заземление. Подключение электроприборов, требующих 3 жилу (заземление), запрещено в двухпроводную сеть, т.к. в таких схемах их защиты нет.

Как сделать заземление в квартире

Возведенные в разное время постройки могут иметь (или вообще нет) разные системы заземления. Если неизвестно, какая система заземления выполнена в доме, нужно это выяснить перед проведением ремонтных работ, т.к. зачастую в квартирах ее нет, и реконструкция требует прокладки защитного проводника от вводного устройства здания к щитку вводно-учетного устройства квартиры.

В первую очередь нужно разобрать розетку (перед этим обесточить квартиру – выключить автоматы и предохранители). Если провод двухжильный, то система в квартире TN-C. Алюминиевая проводка подлежит замене, т.к. подключать в такую сеть новые мощные электроприборы (стиральные машины, кондиционеры, конвекторы, электрокотлы и др.) запрещено. Это может привести к перегреву проводки и пожару.

Далее необходимо выяснить, сколько проводов приходит на распределительный щит или вводно-учетный, если счетчик находится в квартире. Наличие трех жил кабеля говорит о TN-C-S-системе.

Также следует проверить вводной щит (общедомовой), наличие и тип заземления, место разделения заземляющего проводника TN-C-S или TN-S-системы.

После этого становится понятно, как проектировать заземление в квартире – от общедомового распределительного щита либо от вводно-учетного (распределительного) щитка потребителя. Последний вариант TN-C-S встречается в новых постсоветских постройках.

10 способов методики заземления энергий

Начнем мы с вами с самых простых действий, доступных каждому из вас в любой момент времени…

1. Физические упражнения

Любые физические упражнения, включая бытовые действия, типа уборки по дому, активизируют ваше физическое начало и задействуют ваше тело.

В этот момент ментальная энергия, собравшаяся вокруг вашей головы, спускается ниже и распространяется по всему телу. А ведь именно физическое тело, главный проводник энергии, идущей из Земли к вам.

2. Массаж и похлопывание тела

Если сделать себе массаж – довольно сложное занятие, то “прохлопать” каждую часть вашего тела открытой ладонью – вполне реально. Тем самым вы “включаете” тело и разгоняете заблокированную в нем энергию.

Пример похлопывания – в видео ролике, снятом на выездном тренинге на Кипре в прошлом году.

3. Принимайте ванны с солью

Когда вы теряете заземление, ваше эфирное поле простирается далеко за пределы физического тела. Именно поэтому вам кажется, что вы теряете связь с реальностью.

Обтирание солевым мылом или купание в ванне с солью сужает границы вашего эфирного поля, возвращая вас, в буквальном смысле, в тело.

Этот способ крайне рекомендован после любых энергетических и медитативных практик.

4. Ешьте корнеплоды

Все, что растет в земле, имеет устойчивую природную связь с землей, а значит, помогает вам заземлиться.

К этой категории относятся корнеплоды (картофель, морковь, свекла, репа и т.д.), как в свежем виде, так и в приговленном.

См. также Рецепты блюд для чакр

5. Употребляйте фрукты и овощи красного/оранжевого цвета

Когда вы теряете заземление, это результат того, что ваша 1я и 2я чакры в дисбалансе, когда движение энергии направленно на верхние энергетические центры.

Для раскрытия нижних центров рекомендовано употреблять фрукты и овощи красного и оранжевого цвета. Желательно в свежем виде.

6. Пейте больше чистой воды

Вода помогает проводить энергию в теле, а также очищает ваш организм от токсинов и вредных веществ.

Несколько литров чистой воды в день (не кофе, соков или чая, а именно простой питьевой воды) поможет вам нормализовать протекание энергии в теле.

7. Работа на земле и с землей

Пересаживание цветов в домашних условиях, работа на приусадебном участке, поделки из глины мгновенно позволяют вам заземлиться.

В летний период хорошо работает хождение по земле/песку/воде босиком.

И не забудьте про осознанные прогулки, когда вы переключаете свой ум с повседневных мыслей и направляете внимание на почву под ногами, на ее шероховатости, ямки, лужи и т.д.

8. Общайтесь с природой

Природа никогда не теряет связь с землей, ибо без земли не будет и природы.

Прогулка по парку, лесу или берегу моря успокаивает, замедляет вас и заряжает энергией.

Вы можете выбрать любой природный уголок рядом с вашим домом или офисом и приходить в это сакральное для вас место для гармонизации и балансировки.

9. Визуализация заземления

Если все перечисленные выше способы заземления НЕ доступны вам в силу определенных обстоятельств (например, вы находитесь на работе или в транспорте), постарайтесь занять вертикальное положение, убедитесь, что вы твердо стоите на обеих ступнях, представьте, что из ваших ступней вниз в землю уходят мощные коричневые корни, проникая все глубже и глубже…

Вы дерево. С толстыми ветвями, тянущимися в небеса, и с мощными корнями, уходящими в землю. Вам не страшны ураганы и бури, т.к. ваши корни проникают глубоко в почву.

Вы пропускаете через себя поток космической энергии, которая проходит по вашему телу и стекает по корням в землю.

10. Энергетическое заземление

Представьте, что из вашей 1 чакры (в районе копчика) для мужчин и из сакральной чакры (ваши женские органы) для женщин спускается вниз энергетический шнур насыщенного темного цвета. Прямо в ядро Земли.

Чем больше вы визуализируете этот шнур, чем больше энергии направляете вниз, тем прочнее и толще становится этот канат – ваша связь с Землей.

См. также Если вы не умеете визуализировать
Визуализация — это хороший способ использовать воображение для моделирования или изменения своей жизни. Многие духовные практики и медитации включают в себя визуализацию… Но что делать тем, кто не умеет или у кого НЕ получается визуализировать?

Ну и поскольку Земля – живой организм, готовая в любой момент поддержать вас, направить в нужном направлении и окутать своей любовью, не забывайте “признаваться” ей в своей любви и благодарности.

Поблагодарите ее за щедрость даром и безусловную любовь ко всем своим творениям в целом и лично к вам!

P.S. Если вы новичок в работе с энергиями и многие термины из этой статьи вам не понятны, пройдите вводный курс “Как работает ваша энергетическая система“.

Несмотря на то, что курс бесплатный, ценность его высока, т.к. именно с понимания, как вы устроены на уровне энергии, начинается овладение умением СОЗИДАТЬ…

Как открыть и активировать чакры

Получите пошаговые упражнения для открытия ваших чакр!

  • check 7 упражений для открытия чакр
  • check Энергетическая гимнастика на каждый день

Нажимая кнопку «Иду активировать», вы даете согласие на обработку ваших персональных данных и соглашаетесь с Политикой Конфиденциальности

3.4. Способы заземления оборудования

В сетях низких напряжений (до 1000 В), в отличие от сетей высоких напряжений, заземление нейтрали используют тогда, когда это нужно для осуществления защитного зануления или улучшения защитного заземления металлических корпусов электрооборудования. Различают пять типов сетей трехфазного переменного тока:

 трехпроводную сеть с изолированной от земли нейтралью, в которой в качестве защитного мероприятия от поражения электрическим током используют заземление корпусов электрооборудования (рис. 3.5, а),для такой сети принято сокращенное буквенное обозначениеIТ, в котором первая буква означает изолированную нейтраль (Iот французского словаisоlе),а втораяместное заземление корпусов (Тот французского словаtеrrе »земля»);

 трехпроводную сеть с глухозаземленной нейтралью и, как и в предыдущем случае, с местным защитным заземлением корпусов сетьТТ(рис. 3.5,б);

Рис. 3.5.Заземление нейтрали и использование нейтральных

проводников в трехфазных сетях низкого напряжения

 четырехпроводную сеть с глухозаэемленной нейтралью и с использованием нейтрального проводника для зануления корпусов электрооборудования (для заземления их через нулевой нейтральный проводник) сетьIN-C(рис. 3.5,в); первая буква обозначения, как и в случае сетиTT, означает заземление нейтрали, втораязаземление корпусов через нейтральный проводник (Nпеutrе »нейтральный»»), а третьячто этот проводник является одновременно рабочим и защитным (Сотсотbinе »комбинированный, совмещенный»);

 пятипроводную сеть с глухозаземленной нейтралью и отдельными рабочим и защитным нейтральными (нулевыми) проводниками сетьТN-S (рис. 3.5,г;букваSот словаsераrе »раздельный»);

 частично четырех-, а частично пятипроводную сеть с глухозаземленной нейтралью сетьTN-S(рис. 3.5,д).

Трехпроводные сети типа IТприменяют тогда, когда нет необходимости в рабочем нейтральном проводнике, т.е. когда нет однофазных ЭП, требующих включения на фазное напряжение. К ним относят, например, сети напряжением 220Ви подавляющее большинство сетей напряжением 660В.В таких же случаях используют и сети типаТТ, отличающиеся большей эффективностью таких защитных мероприятий, как защитное заземление и защитное отключение по току утечки.

Наиболее распространенными в настоящее время являются сети типа TN-C, позволяющие, например, реализовать трехфазную систему 220/380В.Совмещение рабочего и защитного нейтральных проводников обеспечивает при этом минимальную стоимость сети. Такое совмещение может, однако, оказаться неприемлемым из-за уменьшенной надежности защитных мероприятий, и в таких случаях прибегают к полностью или частично пятипроводным сетям типовTN-S иТN-С-S. Для повышения эффективности защитных мероприятий используют также повторные заземления защитного нулевого проводника или корпусов электрооборудования, показанные на рис. 3.5 пунктиром.

3.5. Заземляющие устройства и меры электробезопасности

Основные определения.Различают два вида опасности поражения челове­ка электрическим током: 1)прикосновение человека к токоведущим частям электроустановки, находящимся под напряжением; 2)прикосновение человека к конструктивным частям, которые могут оказаться под напряжением при повреждении изоляции токоведущих частей электроустановки, т.е. при замыкании на землю или при замыкании на корпус.

Основными защитными мерами против поражения человека электрическим током, т. е. мерами электробезопасности, в первом случае является знание и строгое соблюдение правил техники безопасности при монтаже и эксплуатации электроустановок, а также при пользовании электроприборами и электроинструментом. При электромонтажных работах случаи поражения человека электрическим током при прикосновении к частям, находящимся под напряже­нием, чаще всего имеют место в электроустановках 220-380В(около 80% всех случаев), а также в электроустановках 6и 10кВ(около 20%).

Мерами электробезопасности при повреждении изоляции являются: заземление, зануление, защитное отключение, установка разделяющих трансформаторов, использование малого напряжения, применение двойной изоляции, выравнивание потенциалов.

По требованиям, предъявляемым к электробезопасности, электроустановки подразделяются на:

 электроустановки напряжением выше 1кВв сетях с эффективно заземленной нейтралью (с большими токами замыкания на землю);

 электроустановки напряжением выше 1кВв сетях с изолированный нейтралью (с малыми токами замыкания на землю);

 электроустановки напряжением до 1 кВ с глухозаземленной нейтралью;

 электроустановки напряжением до 1кВ с изолированной нейтралью.

Прежде чем перейти к рассмотрению заземляющих устройств и мер электробезопасности, необходимо привести основные определения и дать некоторые пояснения к ним.

Изолированной нейтральюназывается нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты, заземляющие дугогасящие реакторы и подобные им устройства, имеющие большое сопротивление.

Замыканием на землюназывается случайное соединение находящихся под напряжением частей электроустановки с конструктивными частями, не изолированными от земли, или непосредственно с землей.

Замыканием на корпусназывается случайное соединение находящихся под напряжением частей электроустановки с их конструктивными частями, нормально не находящимися под напряжением.

Заземляющим устройствомназывается совокупность заземлителя и заземляющих проводников.

Заземлителемназывается проводник (электрод) или совокупность металлически соединенных между собой проводников (электродов), находящихся в соприкосновении с землей.

Заземляющим проводникомназывается проводник, соединяющий заземляемые части с заземлителем.

Заземлениемкакой-либо части электроустановки или другой установки называется преднамеренное гальваническое соединение этой части с заземляющим устройством.

Искусственным заземлителемназывается заземлитель, специально выполненный для целей заземления.

Естественным заземлителемназываются находящиеся в соприкосновении с землей электропроводящие части коммуникаций, зданий и сооружений производственного или иного назначения, используемые для целей заземления.

Напряжением на заземляющем устройстве называется напряжение, возникающее при стекании тока в землю между точкой ввода тока в заземляющее устройство и зоной нулевого потенциала (на рис. 3.6 обозначено Uз).

Напряжением относительно земли при замыкании ни корпусназывается напряжение между этим корпусом и зоной нулевого потенциала (на рис. 3.6 равноUз).

Зоной растеканияназывается область земли, в пределах которой возникает заметный градиент потенциала при стекании тока с заземлителя (на рис. 3.6 эта зона имеет диаметр 30-40м).

Зоной нулевого потенциаланазывается зона земли за пределами зоны растекания (на рис. 3.6эта зона находится на расстоянии 15-20мот заземлителя).

Напряжением прикосновенияназывается напряжение между двумя точками цепи тока замыкания на землю (на корпус) при одновременном прикосновении с ним человека (на рис.3.6 обозначеноUприк).

Напряжением шаганазывается напряжение между двумя точками земли, обусловленное растеканием тока замыкания на землю, при одновременном касании их ногами человека (на рис 3.6 оно обозначеноUшаг).

Н

Рис. 3.6. Кривая распределения градиента электрического потенциала в зависимости от расстояния до одиночного заземлителя при замыкании на землю (на заземленный корпус).

Uз — напряжение на заземляющем устройстве, равное электрическому потенциалу на одиночном заземлителе, Uшаг — шаговое напряжение, равное разности электрических потенциалов V1-V2; Uприк — напряжение прикосновения, равное разности электрических потенциалов U3- V3.

а рис. 3.6 для наглядности показано распределение градиента электрического потенциала вокруг одиночного заземлителя (электрода) при растекании тока замыкания на землю. Для уменьшения напряжения прикосновения и напряжения шага принимают меры для выравнивания потенциалов. Это достигается погружением в землю необходимого по расчету числа электродов заземления (заземлителей), располагаемых на расстоянии 3-5модин от другого и соединяемых между собой горизонтальными выравнивающими заземлителями, прокладываемыми на глубине 0,5-0,7мот поверхности земли.

В электроустановках промышленных предприятий в настоящее время вместо устройства искусственных заземлителей ограничиваются использованием естественных заземлителей железобетонных фундаментов промышленных зданий и сооружений.

Током замыкания на землюназывается ток, стекающий в землю через место замыкания (на рис. 3.6 обозначенIз).

Сопротивлением заземляющего устройстваназывается отношение напряжения на заземляющем устройствеUз ктоку, стекающему с заземлителя в землю,Iз.

Защитным отключениемв электроустановках напряжением до 1кВназывается автоматическое отключение всех фаз (полюсов) участка сети, обеспечивающее безопасные для человека сочетания тока и времени его прохождения при замыканиях на корпус или снижении уровня изоляции ниже определенного значения.

Двойной изоляциейЭП называется совокупность рабочей и защитной (дополнительной) изоляции, при которой доступные прикосновению части ЭП не приобретают опасного напряжения при повреждении только рабочей или только защитной (дополнительной) изоляции.

Малым напряжениемназывается номинальное напряжение не более 42В между фазами и по отношению к земле, применяемое в электрических установках для обеспечения электробезопасности.

Разделяющим трансформаторомназывается трансформатор, предназначенный для гальванического отделения сети, питающей ЭП, от первичной электрической сети, а также от сети заземления или зануления.

З

Рис. 3.7. Защитное заземление:

а — в сети с глухозаземленной нейтралью; б — в сети с изолированной нейтралью;

Rз — сопротивление заземляющего устройства; Rч — сопротивление человека; Rи — сопротивление изоляции проводов; А — заземляющий контакт на корпусе светильника; EL — электрическая лампа.

анулениемв электроустановках напряжением до 1кВназывается преднамеренное соединение частей электроустановки, нормально не находящихся под напряжением, с глухозаземленной нейтралью трансформатора или генератора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока. На рис. 3.7, о показаны зануление корпуса светильника и путь основного тока замыкания на корпус светильника.

Нулевым защитным проводникомв электроустановках напряжением до 1кВназывается проводник, соединяющий зануляемые части с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока. На рис. 3.7,анулевой защитный проводник показан пунктиром между заземляющим контактомАна светильнике и магистралью зануления, обозначенной цифрой «0». Магистраль зануления «0» одновременно выполняет функции нулевого рабочего и нулевого защитного проводников.

Согласно правилам техники безопасности (ПТБ) заземление или зануление должно применяться во всех электроустановках напряжением 380 В и выше переменного тока и 440Ви выше постоянного тока, а в помещениях с повышенной опасностью, особо опасных и в наружных установках при переменном токе напряжением выше 42Ви до 380Ви при постоянном токе выше 110В и до 440В.

Заземление и зануление не требуется при напряжении до 42 Впеременного тока и до 110Впостоянного тока во всех случаях, кроме специально оговоренных в ПТБ. В качестве заземляющих в первую очередь должны использоваться естественные заземляющие устройства. Необходимость сооружения искусственных заземлителей, выравнивающих полос и контуров заземления внутри зданий в каждом отдельном случае должна быть обоснована в проекте.

Промышленные электроустановки, а также электроустановки жилых, общественных и других зданий гражданского назначения напряжением до 1 кВвыполняются с глухозаземленной нейтралью. Как видно из риз. 3.7,а,в таких электроустановках замыкание на корпус при повреждении изоляции является коротким замыканием фазы (цепь тока короткого замыкания показана стрелками). При этом должно произойти перегорание предохранителя в фазе с поврежденной изоляцией, отключение ЭП (в данном случае светильника) от источника тока и, следовательно, снятие напряжения с его корпуса.

Для обеспечения быстрого автоматического отключения участка сети, на котором в результате нарушения изоляции произошло однофазное короткое замыкание, фазные и нулевые защитные проводники должны быть рассчитаны так, чтобы значение однофазного тока замыкания на землю было:

 не меньше трехкратного номинального тока плавкой вставки ближайших к месту повреждения изоляции плавких предохранителей;

 трехкратного номинального тока регулируемого расцепителя автоматического выключателя, имеющего обратно зависимую характеристику;

 1,4-кратного тока уставки электромагнитного расцепителя (отсечки) автоматического выключателя с номинальным током до 100 А;

 1,25-кратного тока уставки автоматического выключателя с номинальным током более 100/4.

Если при нарушениях изоляции безопасность не может быть обеспечена системой заземления или зануления, ПТБ рекомендуют применять в качестве основной или дополнительной меры защиты защитное отключение.

В электроустановках напряжением до 1 кВна торфяных разработках, в шахтах, на передвижных и других электроустановках с повышенными требованиями к безопасности применяют электрические сети с изолированной нейтралью (рис. 3.7,б).В таких электроустановках в качестве защитной меры должно применяться заземление всех нетоковедущих элементов, которые могут оказаться под напряжением при повреждениях изоляции, или защитное отключение. Кроме того, такая трехфазная сеть с изолированной нейтралью или однофазная сеть с изолированным выводом, связанная с. сетью напряжением выше 1кВчерез трансформатор, должна иметь защиту от опасности проникания в нее напряжения выше 1кВпри повреждении изоляции между обмотками высшего и низшего напряжений питающего трансформатора. Эта защита осуществляется пробивным предохранителем, включаемым между нейтралью и заземлением или фазой и заземлением на стороне низшего напряжения у каждого понижающего трансформатора.

В электроустановках напряжением выше 1 кВ с изолированной нейтралью в качестве меры безопасности должно быть выполнено заземление (см. рис. 3.6) и приняты меры выравнивания потенциалов, применены устройства контроля состояния изоляции, обеспечивающие возможность быстрого отыскания замыканий на землю (защита от замыканий на землю с действием на сигнал). В установках с повышенными требованиями к безопасности (передвижные электроустановки, установки на торфяных разработках, в шахтах) должна применяться защита от замыканий на землю с действием на отключение выключателя элементов сети с поврежденной изоляцией.

Если в электроустановках напряжением до 1 кВв качестве защитной меры применяются разделяющие трансформаторы с вторичным напряжением не более 380Вили трансформаторы, понижающие напряжение до безопасного (не более 42В),то заземление вторичной обмотки разделяющего трансформатора не допускается; корпус трансформатора должен быть заземлен или занулен; от одного разделяющего трансформатора должен питаться только один ЭП с номинальным током плавкой вставки предохранителя или расцепителя автоматического выключателя на первичной стороне не более 15А.

В качестве разделяющих трансформаторов могут быть использованы понижающие трансформаторы со вторичным напряжением 42 Ви ниже повышенной надежности при условии, что от каждого трансформатора питается не более одного ЭП с номинальным током плавкой вставки предохранителя или расцепителя автоматического выключателя на первичной стороне не более 15А. У понижающих трансформаторов, не являющихся разделяющими, должен быть заземлен или занулен корпус, а также один из фазных выводов или нейтраль (средняя точка) вторичной обмотки.

Если по каким-либо причинам невозможно выполнить заземление, зануление или применить защитное отключение, допускается осуществлять обслуживание электрооборудования с изолирующих площадок при условия исключения возможности одновременного прикосновения к электрическим и другим частям оборудования или к частям здания, а прикосновение к незаземленным (незануленным) частям, представляющее опасность, возможно только с изолирующих площадок.

В электроустановках до 1 кВс изолированной нейтралью (рис. 3.7,б) и во всех установках выше 1кВзаземление и выравнивание потенциалов должно обеспечивать безопасное значение напряжения прикосновенияUприки напряжения шагаUшаг и снижение тока, проходящего через тело человека, до безопасного значения. Для этого сопротивление заземленияRз , включенного в цепь тока замыкания на землю параллельно телу человека (рис. 3.7,б), должно быть мало по сравнению с сопротивлением тела человекаRч.

Выбор заземляющих устройств.Заземляющие устройства электроустано­вок выполняются или по условиям соблюдения нормированных значений к их сопротивлениюRз, либо к напряжению прикосновенияUприк. Заземляющие устройства электроустановок напряжением выше 1кВс эффективно заземленной нейтралью рекомендуется выполнять по расчетным условиям допустимого напряжения прикосновения, а всех прочих электроустановокпо условиям допустимых сопротивлений заземляющего устройства. Заземляющие устройства электроустановок напряжением выше 1кВсети с эффективно заземленной нейтралью, выполненные по условиям соблюдения требований к его сопротивлению, должны иметь в любое время года сопротивлениеRз,0,5Ом,включая сопротивление естественных заземлителей.

При расчете указанного заземляющего устройства по условиям допустимого напряжения прикосновения сопротивление его определяется по допустимому напряжению на заземляющем устройстве Uз, и току замыкания на землю. При этом в любое время года при стекании с заземляющего устройства тока замыкания на землю значение напряжения прикосновения (напряжения на теле человекаUтне должно превышать следующих допустимых значений в зависимости от длительности воздействия (ГОСТ 12.1.038-82):

Uприк=Uт,В……. 500 400 200 130 100 65

t,с……………………0,1 0,2 0,5 0,7 1,0 3,0

Расчетная длительность воздействия определяется как сумма времени срабатывания защиты и времени отключения выключателя. При этом за время срабатывания защиты принимается:

 для рабочих мест, на которых при производстве оперативных переключений возможны короткие замыкания с переходом на конструкции (например, для мест управления разъединителями с ручным приводом), время действия резервной защиты;

 для всей остальной территории данной электроустановки время действия основной зашиты.

Для электроустановок напряжением выше 1 кВс эффективно заземленной нейтралью помимо указанных должны соблюдаться следующие общие требования:

 напряжение на заземляющем устройстве Uз,при стекании с него тока замыкания на землюIз(см. рис. 3.6) не должно превышать 10кВ.Если в таких электроустановках исключена возможность выноса потенциала за пределы зданий и внешних ограждении, тоUздопускается выше 10кВ;

 при напряжениях Uзот 5 до 10кВдолжны осуществляться меры по защите изоляции отходящих кабелей связи и телемеханики и по предотвращению выноса опасных потенциалов за пределы электроустановки.

В сетях электроустановок напряжением выше 1 кВ сизолированной нейтралью сопротивление заземляющего устройства,Ом,должно быть:

 если заземляющее устройство используется одновременно для электроустановок напряжением до 1 кВ,то Rз125/Iз, при этом должны выполняться также требования, предъявляемые к заземлению (занулению) электроустановок напряжением до 1кВ;

 если заземляющее устройство используется только для установок напряжением выше 1 кВ,тоRз250/Iз , но не более 10Ом.

В сетях электроустановок напряжением до 1 кВс глухозаземленной нейтралью сопротивление заземляющего устройства не должно превышать:

 в сетях трехфазного тока напряжением 660 Ви однофазного тока напряжением 380ВRз2Ом;

 в сетях трехфазного тока напряжением 380 Ви однофазного тока напряжением 220ВRз4Ом;

 в сетях трехфазного тока напряжением 220 Ви однофазного тока напряжением 127ВRз8Ом.

Указанные величины Rздолжны быть обеспечены с учетом использования естественных заземлителей (в том числе и повторных заземлителей нулевого провода).

В электроустановках напряжением до 1 кВс глухозаземленной нейтралью правилами устройства электроустановок допускается при удельном сопротивлении земли> 100Ом•мувеличение расчетного значения сопротивления заземляющего устройства в 0,01раз против приведенных выше нормированных значений. При этом максимально допустимое сопротивление заземляющего устройства не должно превышать нормированное значение более чем в 10 раз.

В электроустановках напряжением выше 1 кВ, атакже до 1кВ сизолированной нейтралью при> 500Ом•мдопускается повышать значение сопротивления заземляющих устройств в 0,002раз, но также не более чем в 10 раз.

В сетях напряжением до 1 кВ с изолированной нейтралью сопротивление заземляющего устройства электроустановки не должно превышать 4 Ом.

Для электроустановок малой мощности при мощности генератора или трансформатора 100 кВАи менее сопротивление заземляющего устройства должно быть не более 10Ом.Если при этом параллельно работает несколько генераторов или трансформаторов, их суммарная мощность не должна превышать 100 кВА.

Для обеспечения выравнивания потенциалов строительные конструкции, стационарно проложенные трубопроводы, металлические конструкции технологического оборудования должны быть присоединены к арматуре железобетонных колонн или фундаментов зданий. Если замерами или расчетами установлено, что естественные заземлители не обеспечивают нормированные значения сопротивления растеканию или напряжения прикосновения, то применяют совместное использование естественных и искусственных заземлителей. При этом контур искусственных заземлителей должен быть соединен с арматурой железобетонных фундаментов не менее чем в двух местах. При этом соединение должно выполняться выше уровня планировки прилегающей территории.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *