Опубликовано

Как работает шаговый двигатель?

Содержание

Режимы управления

Теперь рассмотрим различные способы подачи тока на обмотки и увидим, как в результате вращается вал мотора.

Волновое управление или полношаговое управление одной обмоткой

Этот способ описан выше и называется волновым управлением одной обмоткой. Это означает, что только через одну обмотку протекает электрический ток. Этот способ используется редко. В основном, к нему прибегают в целях снижения энергопотребления. Такой метод позволяет получить менее половины вращающего момента мотора, следовательно, нагрузка мотора не может быть значительной.

У такого мотора будет 4 шага на оборот, что является номинальным числом шагов.

Полношаговый режим управления

Вторым, и наиболее часто используемым методом, является полношаговый метод. Для реализации этого способа, напряжение на обмотки подается попарно. В зависимости от способа подключения обмоток (последовательно или параллельно), мотору потребуется двойное напряжение или двойной ток для работы по отношению к необходимым при возбуждении одной обмотки. В этом случае мотор будет выдавать 100% номинального вращающего момента.

Такой мотор имеет 4 шага на полный оборот, что и является номинальным числом шагов для него.

Полушаговый режим

Это очень интересный способ получить удвоенную точность системы позиционирования, не меняя при этом ничего в «железе»! Для реализации этого метода, все пары обмоток могут запитываться одновременно, в результате чего, ротор повернется на половину своего нормального шага. Этот метод может быть также реализован с использованием одной или двух обмоток. Ниже показано, как это работает.

Однообмоточный режим

Двухобмоточный режим

Используя этот метод, тот же самый мотор сможет дать удвоенное число шагов на оборот, что означает двойную точность для системы позиционирования. Например, этот мотор даст 8 шагов на оборот!

Режим микрошага

Микрошаговый режим наиболее часто применяемый способ управления шаговыми двигателями на сегодняшний день. Идея микрошага состоит в подаче на обмотки мотора питания не импульсами, а сигнала, по своей форме, напоминающего синусоиду. Такой способ изменения положения при переходе от одного шага к другому позволяет получить более гладкое перемещение, делая шаговые моторы широко используемыми в таких приложениях как системы позиционирования в станках с ЧПУ. Кроме этого, рывки различных деталей, подключенных к мотору, также как и толчки самого мотора значительно снижаются. В режиме микрошага, шаговый мотор может вращаться также плавно как и обычные двигатели постоянного тока.

Форма тока, протекающего через обмотку похожа на синусоиду. Также могут использоваться формы цифровых сигналов. Вот некоторые примеры:

Метод микрошага является в действительности способом питания мотора, а не методом управления обмотками. Следовательно, микрошаг можно использовать и при волновом управлении и в полношаговом режиме управления. Ниже продемонстрирована работа этого метода:

Хотя кажется, что в режиме микрошага шаги становятся больше, но, на самом деле, этого не происходит. Для повышения точности часто используются трапецевидные шестерни. Этот метод используется для обеспечения плавного движения.

Типы шаговых двигателей

Шаговый двигатель с постоянным магнитом

Ротор такого мотора несет постоянный магнит в форме диска с двумя или большим количеством полюсов. Работает точно также как описано выше. Обмотки статора будут притягивать или отталкивать постоянный магнит на роторе и создавать тем самым крутящий момент. Ниже представлена схема шагового двигателя с постоянным магнитом.

Обычно, величина шага таких двигателей лежит в диапазоне 45-90°.

Шаговый двигатель с переменным магнитным сопротивлением

У двигателей этого типа на роторе нет постоянного магнита. Вместо этого, ротор изготавливается из магнитомягкого металла в виде зубчатого диска, типа шестеренки. Статор имеет более четырех обмоток. Обмотки запитываются в противоположных парах и притягивают ротор. Отсутствие постоянного магнита отрицательно влияет на величину крутящего момента, он значительно снижается. Но есть и большой плюс. У этих двигателей нет стопорящего момента. Стопорящий момент — это вращающий момент, создаваемый постоянными магнитами ротора, которые притягиваются к арматуре статора при отсутствии тока в обмотках. Можно легко понять, что это за момент, если попытаться повернуть рукой отключенный шаговый двигатель с постоянным магнитом. Вы почувствуете различимые щелчки на каждом шаге двигателя. В действительности то, что вы ощутите и будет фиксирующим моментом, который притягивает магниты к арматуре статора. Ниже показана работа шагового двигателя с переменным магнитным сопротивлением.

Шаговые двигатели с переменным магнитным сопротивлением обычно имеют шаг, лежащий в диапазоне 5-15°.

Гибридный шаговый двигатель

Данный тип шаговых моторов получил название «гибридный» из-за того, что сочетает в себе характеристики шаговых двигателей и с постоянными магнитами и с переменным магнитным сопротивлением. Они обладают отличными удерживающим и динамическим крутящим моментами, а также очень маленькую величину шага, лежащую в пределах 0.9-5°, обеспечивая великолепную точность. Их механические части могут вращаться с большими скоростями, чем другие типы шаговых моторов. Этот тип двигателей используется в станках ЧПУ high-end класса и в роботах. Главный их недостаток — высокая стоимость.

Обычный мотор с 200 шагами на оборот будет иметь 50 положительных и 50 отрицательных полюсов с 8-ю обмотками (4-мя парами). Из-за того, что такой магнит нельзя произвести, было найдено элегантное решение. Берется два отдельных 50-зубых диска. Также используется цилиндрический постоянный магнит. Диски привариваются один с положительному, другой к отрицательному полюсам постоянного магнита. Таким образом, один диск имеет положительный полюс на своих зубьях, другой — отрицательный.

Два 50-зубых диска помещены сверху и снизу постоянного магнита

Фокус в том, что диски размещаются таким образом, что если посмотреть на них сверху, то они выглядят как один 100-зубый диск! Возвышения на одном диске совмещаются со впадинами на другом.

Впадины на одном диске выровнены с возвышениями на другом

Ниже показана работа гибридного шагового двигателя, имеющего 75 шагов на оборот (1.5° на шаг). Стоит заметить, что 6 обмоток спарены, каждая имеет обмотку с противоположной стороны. Вы наверняка ожидали, что катушки расположены под углом в 60° следом друг за другом, но, на самом деле, это не так. Если предположить, что первая пара — это самая верхняя и самая нижняя катушки, тогда вторая пара смещена под углом 60+5° по отношению к первой, и третья смещена на 60+5° по отношению ко второй. Угловая разница и является причиной вращения мотора. Режимы управления с полным и половинным шагом могут использоваться, впрочем как и волновое управление для снижения энергопотребления. Ниже продемонстрировано полношаговое управление. В полушаговом режиме, число шагов увеличится до 150!

Не пытайтесь следовать за обмотками, чтобы понаблюдать, как это работает. Просто сфокусируйтесь на одной обмотке и ждите. Вы заметите, что всякий раз, когда обмотка задействована, есть 3 положительных полюса (красный) в 5° позади, которые притягиваются по направлению вращения и другие 3 отрицательных полюса (синий) в 5° впереди, которые толкаются в направлении вращения. Задействованная обмотка всегда находится между положительным и отрицательным полюсами.

Подключение обмоток

Шаговые двигатели относятся к многофазным моторам. Больше обмоток, значит, больше фаз. Больше фаз, более гладкая работа мотора и более выокая стоимость. Крутящий момент не связан с числом фаз. Наибольшее распространение получили двухфазные двигатели. Это минимальное количество необходимых для того, чтобы шаговый мотор функционировал. Здесь необходимо понять, что число фаз не обязательно определяет число обмоток. Например, если каждая фаза имеет 2 пары обмоток и мотор является двухфазным, то количество обмоток будет равно 8. Это определяет только механические характеристики мотора. Для упрощения, я рассмотрю простейший двухфазный двигатель с одной парой обмоток на фазу.

Существует три различных типа подключения для двухфазных шаговых двигателей. Обмотки соединяются между собой, и, в зависимости от подключения, используется различное число проводов для подключения мотора к контроллеру.

Биполярный двигатель

Это наиболее простая конфигурация. Используются 4 провода для подключения мотора к контроллеру. Обмотки соединяются внутри последовательно или параллельно. Пример биполярного двигателя:

Мотор имеет 4 клеммы. Два желтых терминала (цвета не соответствуют стандартным!) питают вертикальную обмотку, два розовых — горизонтальную обмотку. Проблема такой конфигурации состоит в том, что если кто-то захочет изменить магнитную полярность, то единственным способом будет изменение направления электрического тока. Это означает, что схема драйвера усложнится, например это будет H-мост.

Униполярный двигатель

В униполярном двигателе общий провод подключен к точке, где две обмотки соединены вместе:

Используя этот общий провод, можно легко изменить магнитные полюса. Предположим, например, что мы подключили общий провод к земле. Запитав сначала один вывод обмотки, а затем другой — мы изменяем магнитные полюса. Это означает, что схема для использования биполярного двигателя очень простая, как правило, состоит только из двух транзисторов на фазу. Основным недостатком является то, что каждый раз, используется только половина доступных катушечных обмоток. Это как при волновом управлении двигателем с возбуждением одной обмотки. Таким образом, крутящий момент всегда составляет около половины крутящего момента, который мог быть получен, если бы обе катушки были задействованы. Другими словами, униполярные электродвигатели должны быть в два раза более габаритными, по сравнению с биполярным двигателем, чтобы обеспечить такой же крутящий момент. Однополярный двигатель может использоваться как биполярный двигатель. Для этого нужно оставить общий провод неподключенным.

Униполярные двигатели могут иметь 5 или 6 выводов для подключения. На рисунке выше продемонстрирован униполярный мотор с 6 выводами. Существуют двигатели, в которых два общих провода соединены внутри. В этом случае, мотор имеет 5 клемм для подключения.

8-выводной шаговый двигатель

Это наиболее гибкий шаговый мотор в плане подключения. Все обмотки имеют выводы с двух сторон:

Этот двигатель может быть подключен любым из возможных способов. Он может быть подключен как:

  • 5 или 6-выводной униполярный,
  • биполярный с последовательно соединенными обмотками,
  • биполярный с параллельно соединенными обмотками,
  • биполярный с одним подключением на фазу для приложений с малым потреблением тока

Для работы практически всех электрических приборов, необходимы специальные приводные механизмы. Предлагаем рассмотреть, что такое шаговый двигатель, его конструкцию, принцип работы и схемы подключения.

Шаговый двигатель представляет собой электрическую машину, предназначенную для преобразования электрической энергии сети в механическую энергию. Конструктивно состоит из обмоток статора и магнитомягкого или магнитотвердого ротора. Отличительной особенностью шагового двигателя является дискретное вращение, при котором заданному числу импульсов соответствует определенное число совершаемых шагов. Наибольшее применение такие устройства получили в станках с ЧПУ, робототехнике, устройствах хранения и считывания информации.

В отличии от других типов машин шаговый двигатель совершает вращение не непрерывно, а шагами, от чего и происходит название устройства. Каждый такой шаг составляет лишь часть от его полного оборота. Количество необходимых шагов для полного вращения вала будет отличаться, в зависимости от схемы соединения, марки двигателя и способа управления.

Преимущества и недостатки шагового электродвигателя

К преимуществам эксплуатации шагового двигателя можно отнести:

  • В шаговых электродвигателях угол поворота соответствует числу поданных электрических сигналов, при этом, после остановки вращения сохраняется полный момент и фиксация;
  • Точное позиционирование – обеспечивает 3 – 5% от установленного шага, которая не накапливается от шага к шагу;
  • Обеспечивает высокую скорость старта, реверса, остановки;
  • Отличается высокой надежностью за счет отсутствия трущихся компонентов для токосъема, в отличии от коллекторных двигателей;
  • Для позиционирования шаговому двигателю не требуется обратной связи;
  • Может выдавать низкие обороты для непосредственно подведенной нагрузки без каких-либо редукторов;
  • Сравнительно меньшая стоимость относительно тех же сервоприводов;
  • Обеспечивается широкий диапазон управления скоростью оборотов вала за счет изменения частоты электрических импульсов.

К недостаткам применения шагового двигателя относятся:

  • Может возникать резонансный эффект и проскальзывание шагового агрегата;
  • Существует вероятность утраты контроля из-за отсутствия обратной связи;
  • Количество расходуемой электроэнергии не зависит от наличия или отсутствия нагрузки;
  • Сложности управления из-за особенности схемы

Устройство и принцип работы

Рис. 1. Принцип действия шагового двигателя

На рисунке 1 изображены 4 обмотки, которые относятся к статору двигателя, а их расположение устроено так, что они находятся под углом 90º относительно друг друга. Из чего следует, что такая машина характеризуется размером шага в 90º.

В момент подачи напряжения U1 в первую обмотку происходит перемещение ротора на те же 90º. В случае поочередной подачи напряжения U2, U3, U4 в соответствующие обмотки, вал продолжит вращение до завершения полного круга. После чего цикл повторяется снова. Для изменения направления вращения достаточно изменить очередность подачи импульсов в соответствующие обмотки.

Для обеспечения различных параметров работы важна как величина шага, на который будет смещаться вал, так и момент, прилагаемый для перемещения. Вариации данных параметров достигаются за счет конструкции самого ротора, способа подключения и конструкции обмоток.

По конструкции ротора

Вращаемый элемент обеспечивает магнитное взаимодействие с электромагнитным полем статора. Поэтому его конструкция и технические особенности напрямую определяют режим работы и параметры вращения шагового агрегата. Чтобы на практике определить тип шагового мотора, при обесточенной сети необходимо провернуть вал, если ощущаете сопротивление, то это свидетельствует о наличии магнита, в противном случае, это конструкция без магнитного сопротивления.

Реактивный

Реактивный шаговый двигатель не оснащается магнитом на роторе, а выполняется из магнитомягких сплавов, как правило, его набирают из пластин для уменьшения потерь на индукцию. Конструкция в поперечном разрезе напоминает шестерню с зубцами. Полюса статорных обмоток запитываются противоположными парами и создают магнитную силу для перемещения ротора, который двигается от попеременного протекания электрического тока в обмоточных парах.

С переменным магнитным сопротивлением

Весомым плюсом такой конструкции шагового привода является отсутствие стопорящего момента, образуемого полем по отношению к арматуре. По факту это тот же синхронный двигатель, в котором поворот ротора идет в соответствии с полем статора. Недостатком является снижение величины вращающего момента. Шаг для реактивного двигателя колеблется от 5 до 15°.

С постоянными магнитами

В этом случае подвижный элемент шагового двигателя собирается из постоянного магнита, в котором может быть два и большее количеством полюсов. Вращение ротора обеспечивается притяжением или отталкиванием магнитных полюсов электрическим полем при подаче напряжения в соответствующие обмотки. Для этой конструкции угловой шаг составляет 45-90°.

С постоянным магнитом

Гибридные

Был разработан с целью объединения лучших качеств двух предыдущих моделей, за счет чего агрегат обладает меньшим углом и шагом. Его ротор выполнен в виде цилиндрического постоянного магнита, который намагничен по продольной оси. Конструктивно это выглядит как два круглых полюса, на поверхности которых расположены зубцы ротора из магнитомягкого материала. Такое решение позволило обеспечить отличный удерживающий и крутящий момент.

Устройство гибридного шагового двигателя

Преимущества гибридного шагового двигателя заключатся в его высокой точности, плавности и скорости перемещения, малым шагом – от 0,9 до 5°. Их применяют для высококлассных станков ЧПУ, компьютерных и офисных приборах и современной робототехнике. Единственным недостатком считается относительно высокая стоимость.

Для примера разберем вариант гибридных ШД на 200 шагов позиционирования вала. Соответственно каждый из цилиндров будет иметь по 50 зубцов, один из них является положительным полюсом, второй отрицательным. При этом каждый положительный зубец расположен напротив паза в отрицательном цилиндре и наоборот. Конструктивно это выглядит так:

Расположение пазов гибридника

Из-за чего на валу шагового двигателя получается 100 перемежающихся полюсов с отличной полярностью. Статор также имеет зубцы, как показано на рисунке 6 ниже, кроме промежутков между его компонентами.

Рис. 6. Принцип работы гибридного ШД

За счет такой конструкции можно достичь смещения того же южного полюса относительно статора в 50 различных позиций. За счет отличия положения в полупозиции между северным и южным полюсом достигается возможность перемещения в 100 позициях, а смещение фаз на четверть деления предоставляет возможность увеличить количество шагов за счет последовательного возбуждения еще вдвое, то есть до 200 шагов углового вала за 1 оборот.

Обратите внимание на рисунок 6, принцип работы такого шагового двигателя заключается в том, что при попарной подаче тока в противоположные обмотки происходит подтягивание разноименных полюсов ротора, расположенных за зубьями статора и отталкивание одноименных, идущих перед ними по ходу вращения.

По виду обмоток

На практике шаговый двигатель представляет собой многофазный мотор. Плавность работы в котором напрямую зависит от количества обмоток – чем их больше, тем плавне происходит вращение, но и выше стоимость. При этом крутящий момент от числа фаз не увеличивается, хотя для нормальной работы их минимальное число на статоре электродвигателя должно составлять хотя бы две. Количество фаз не определяет числа обмоток, так двухфазный шаговый двигатель может иметь четыре и более обмотки.

Униполярный

Униполярный шаговый двигатель отличается тем, что в схеме подключения обмотки имеется ответвление от средней точки. Благодаря чему легко меняются магнитные полюса. Недостатком такой конструкции является использование только одной половины доступных витков, из-за чего достигается меньший вращающий момент. Поэтому они отличаются большими габаритами.

Униполярный ШД

Для использования всей мощности катушки средний вывод оставляют не подключенным. Рассмотрите конструкции униполярных агрегатов, они могут содержать 5 и 6 выводов. Их количество будет зависеть от того, выводится срединный провод отдельно от каждой обмотки двигателя или они соединяются вместе.

Схема а) с различными, б) с одним выводом

Биполярный

Биполярный шаговый двигатель подключается к контроллеру через 4 вывода. При этом обмотки могут соединяться внутри как последовательно, так и параллельно. Рассмотрите пример его работы на рисунке.

Биполярный шаговый двигатель

В конструктивной схеме такого двигателя вы видите с одной обмоткой возбуждения в каждой фазе. Из-за этого смена направления тока требует использовать в электронной схеме специальные драйверы (электронные чипы, предназначенные для управления). Добиться подобного эффекта можно при помощи включения Н-моста. В сравнении с предыдущим, биполярное устройство обеспечивает тот же момент при гораздо меньших габаритах.

Подключение шагового двигателя

Чтобы запитать обмотки, потребуется устройство способное выдать управляющий импульс или серию импульсов в определенной последовательности. В качестве таких блоков выступают полупроводниковые приборы для подключения шагового двигателя, микропроцессорные драйвера. В которых имеется набор выходных клемм, каждая из них определяет способ питания и режим работы.

В зависимости от схемы подключения должны применяться те или другие выводы шагового агрегата. При различных вариантах подведения тех или иных клемм к выходному сигналу постоянного тока получается определенная скорость вращения, шаг или микрошаг линейного перемещения в плоскости. Так как для одних задач нужна низкая частота, а для других высокая, один и тот же двигатель может задавать параметр за счет драйвера.

Типичные схемы подключения ШД

В зависимости того, какое количество выводов представлено на конкретном шаговом двигателе: 4, 6 или 8 выводов, будет отличаться и возможность использования той или иной схемы их подключения Посмотрите на рисунки, здесь показаны типичные варианты подключения шагового механизма:

Схемы подключения различных типов шаговых двигателей

При условии запитки основных полюсов шаговой машины от одного и того же драйвера, по данным схемам можно отметить следующие отличительные особенности работы:

  • Выводы однозначно подводятся к соответствующим клеммам устройства. При последовательном соединении обмоток увеличивает индуктивность обмоток, но понижает ток.
  • Обеспечивает паспортное значение электрических характеристик. При параллельной схеме увеличивается ток и снижается индуктивность.
  • При подключении по одной фазе на обмотку снижется момент на низких оборотах и уменьшает величину токов.
  • При подключении осуществляет все электрические и динамические характеристики согласно паспорта, номинальный токи. Значительно упрощается схема управления.
  • Выдает куда больший момент и применяется для больших частот вращения;
  • Как и предыдущая предназначена для увеличения момента, но применяется для низких частот вращения.

Управление шаговым двигателем

Выполнение операций шаговым агрегатом может осуществляться несколькими методами. Каждый из которых отличается способом подачи сигналов на пары полюсов. Всего выделяют тир метода активации обмоток.

Волновой – в таком режиме происходит возбуждение только одной обмотке, к которой и притягиваются роторные полюса. При этом шаговый двигатель не способен вытягивать большую нагрузки, так как выдает лишь половину момента.

Волновое управление

Полношаговый – в таком режиме происходит одновременная коммутация фаз, то есть, возбуждаются сразу обе. Из-за чего обеспечивается максимальный момент, в случае параллельного соединения или последовательного включения обмоток будет создаваться максимальное напряжение или ток.

Полношаговое управление

Полушаговый – представляет собой комбинацию двух предыдущих методов коммутации обмоток. Во время реализации которого в шаговом двигателе происходит поочередная подача напряжения сначала в одну катушку, а затем сразу в две. Благодаря чему обеспечивается лучшая фиксация на максимальных скоростях и большее количество шагов.

Полушаговое управление

Для более мягкого управления и преодоления инерции ротора используется микрошаговое управление, когда синусоида сигнала осуществляется микроступенчатыми импульсами. За счет чего силы взаимодействия магнитных цепей в шаговом двигателе получают более плавное изменение и, как следствие, перемещение ротора между полюсами. Позволяет в значительной степени снизить рывки шагового двигателя.

Без контроллера

Для управления бесколлекторными двигателями применяется система Н-моста. Который позволяет переключать полярность для реверса шагового двигателя. Может выполняться на транзисторах или микросхемах, которые создают логическую цепочку для перемещения ключей.

Схема Н-моста

Как видите, от источника питания V напряжение подается на мост. При попарном включении контактов S1 – S4 или S3 – S2 будет происходить движение тока через обмотки двигателя. Что и обусловит вращение в ту или иную сторону.

С контроллером

Устройство контроллера позволяет осуществлять управление шаговым двигателем в различных режимах. В основе контроллера лежит электронный блок, формирующий группы сигналов и их последовательность, посылаемых на катушки статора. Для предотвращения возможности его повреждения в случае короткого замыкания или другой аварийной ситуации на самом двигателе каждый вывод защищается диодом, который не пропусти импульс в обратную сторону.

Подключение через контроллер однополярного шагового двигателя

Популярные схемы управления ШД

Схема управления от контроллера с дифференциальным выходом

Является одним из наиболее помехозащищенных способов работы. При этом прямой и инверсный сигнал напрямую подключается к соответствующим полюсам. В такой схемы должно применяться экранирование сигнального проводника. Прекрасно подходит для нагрузки с низкой мощностью.

Схема управления от контроллера с выходом типа «открытый коллектор»

В данной схеме происходит объединение положительных вводов контроллера, которые подключаются к положительному полюсу. В случае питания выше 9В требуется включение в схему специального резистора для ограничения тока. Позволяет задавать необходимое количество шагов со строго установленной скоростью, определить ускорение и т.д.

Принцип работы привода

Принцип работы данного привода выглядит следующим образом. При приложении напряжении к клеммам, щетки на самом шаговом двигателе начинают постоянно двигаться. Движок холостого хода имеет при этом уникальное свойство: он преобразовывает входящие импульсы, имеющие преимущественно прямоугольную направленность, в заранее обозначенное положение приложенного ведущего вала.

Каждый из входящих импульсом способен переместить вал под определенным углом. Приборы, которые оснащены подобным редуктором, имеют максимальную эффективность при условии наличия нескольких зубчатых электромагнитов, которые находятся вокруг центрального железного куска, имеющего зубчатую форму. Внешняя цепь управления возбуждает электромагнит. При необходимости повернуть вал двигателя, тот электромагнит, к которому приложена энергия, притягивает к себе зубья колеса. Когда они выравниваются по отношению к электромагниту, они смещены по отношению к последующей магнитной части двигателя.

Первый электромагнит выключается, а затем включается второй, после чего начинает вращаться шестеренка, выравниваясь при этом с предыдущим колесом. Затем такое действие повторяется необходимое количество раз. Каждое из таких вращений называют постоянным шагом, при этом скорость вращения шагового двигателя можно вычислить при подсчете количества шагов, нужных для полного его оборота.

Чтобы контролировать работу шагового двигателя применяется специальный драйвер. Это необходимо в тех случаях, если вы настраиваете привод для работы станка или применяете его для запуска в работу ветрогенератора.

Шаговые двигатели подразделяются на такие типы:

  • с наличием постоянного магнита;
  • синхронный гибридный привод;
  • переменный двигатель.

Все они несколько отличаются друг от друга, в том числе и по принципам своей работы.

Так, например, приводы с постоянными магнитами оснащены специальной магнитной деталью в роторе. Такие двигатели работают по принципу притяжения либо отталкивания статором и ротором мотора на основе электромагнита.

Переменный двигатель имеет обычный железный ротор и работа его построена по принципу фундаментальности. Когда допускается минимальный уровень отталкивания с самым малым зазором, при этом точки ротора имеют притяжение к полюсам статора.

А вот гибридный привод может сочетать в себе оба принципа работы, он считается наиболее дорогой моделью шаговых двигателей.

Двухфазные шаговые двигатели

Двухфазный мотор очень прост, его можно установить человеку без специального опыта. Независимо от того, собрали ли вы его самостоятельно или приобрели в готовом виде, он имеет два типа обмотки для катушек:

  • униполярную;
  • биполярную.

Если шаговый двигатель имеет одну обмотку с центральным магнитным краном, влияющим на каждую фазу, то это униполярный привод. Каждую обмоточную секцию следует включить с целью обеспечения нужного направления магнитного поля. В данном приводе магнитный полюс способен функционировать без необходимости дополнительного переключения, поэтому направления тока и цепная коммутация делаются очень просто, при помощи одного транзистора на каждую обмотку. При этом учитываются переключения фазы:

  • три провода на фазу;
  • шесть на выходной сигнал.

Микроконтроллер двигателя привода можно применять с целью активизации транзистора в той или иной последовательности.

А обмотки можно также подключать при помощи прикосновения проводов соединения вместе с постоянными магнитами привода. При соединении катушечных клемм, повернуть вал будет затруднительно. Сопротивление между катушечным торцом и общим проводом равно половине сопротивления катушечных и проводных торцов. Это выглядит так, поскольку общий провод имеет большую длину, нежели половинная часть, используемая для соединения катушек.

Биполярные шаговые двигатели имеют одну фазовую обмотку, в которую ток поступает переломным способом с применением магнитного полюса. Управляющая система в данном случае будет сложной с использованием соединяющего моста. На фазу имеется в наличии два провода, но они не общие. При смешении сигнала шагового двигателя на высоких частотах, эффект трения системы может быть снижен.

Кроме того, еще одним типом шагового двигателя является трехфазный, но сфера его применения слишком узкая:

  • при работе фрезерных станков с ЧПУ;
  • на некоторых автомобилях, где применяется дроссельная заслонка;
  • на дисководе и принтерах некоторых марок.

Реактивные шаговые двигатели: особенности и принцип работы

Стоит отметить, что активные шаговые приводы имеют большой недостаток: это крупный шаг, достигающий нескольких десятков градусов. В отличие от них, реактивные шаговые двигатели способны редуцировать роторную частоту, благодаря чему шаг становится угловым менее градуса.

Главной особенностью реактивного привода является то, что зубцы размещены на статорных полюсах. Синхронизирующий момент в нем обеспечивается разницей магнитных сопротивлений по поперечной и продольной оси привода.

Реактивный шаговый двигатель имеет один ключевой недостаток: в нем отсутствует синхронизирующий момент, если обмотки статора обесточены.

Повысить степень редукции двигателя, причем независимо какого, активного или реактивного, можно при использовании многопакетных конструкций, когда зубцы статора сдвигаются друг на друга на часть деления, а ротора каждого пакета не сдвигаются и оси их полюсов одинаковые. Подобная конструкция очень сложная в плане создания и стоит в готовом виде недешево, также к ней потребуется сложный коммутатор.

На сегодняшний день в продаже можно отыскать огромное количество всевозможных конструкций двигателей, которые отличаются по таким параметрам, как:

  • количество фаз;
  • тип размещения обмотки;
  • способы фиксации ротора и т.д.

В индукторных шаговых двигателях момент вращения создается при взаимодействии магнитного поля, которое создается статорными обмотками и постоянного магнита, располагаемого в зубчатой части зазора.

Синхронизирующий момент в индукторном двигателе сам по себе реактивный, благодаря чему получается статорная обмотка, а постоянный магнит способен создавать момент фиксации, благодаря чему ротор удерживается в нужном положении при отсутствующем токе.

В отличие от реактивного шагового двигателя, индукторный, при аналогичном шаге, имеет больший синхронизирующий момент, а также более улучшенные технические характеристики.

Синхронные линейные шаговые двигатели

С целью автоматизации некоторых производственных процессов на предприятии, иногда возникает необходимость перемещения объектов в плоскости. Чтобы это сделать, потребуется использовать специальный преобразователь вращательного движения в поступательное, что достигается путем применения кинематики.

При помощи линейных шаговых двигателей можно преобразовать импульсную команду прямо в линейное перемещение, что значительно упростит кинематическую схему всевозможных электрических приводов.

Статор в данном приводе представлен в виде магнитомягкой плиты, а провода подмагничиваются путем работы постоянного магнита.

Зубцовые деления в статоре и подвижной части одинаковые, при этом они могут быть сдвинуты на половину деления в пределах одного провода ротора. Поток подмагничивания и его магнитное сопротивление, в данном случае, не зависят от того, где находится подвижная часть двигателя.

Чтобы переместить объект в плоскости согласно двум координатам, применяют двигатели двухкоординатного типа.

Также в линейных двигателях используется магнитно-воздушная подвеска. Благодаря силе магнитного притяжения ротор притягивается к статору. Далее под ротор сквозь форсунки нагнетают воздух в сжатом виде, вследствие чего появляется сила, отталкивающая ротор от статора. Так между ними возникает воздушная подушка и ротор висит над статором с наличием минимально зазора. Это и обеспечивает минимум сопротивления движения ротора и высокоточное позиционирование.

В каких режимах способен работать синхронный шаговый двигатель?

Привод способен работать устойчиво при условии отсутствия потерь шагов во время отработки угла при подаче на обмотки управления импульсных серий. При отработке каждого шага ротор имеет уверенное равновесие по отношению к вектору магнитной индукции, относящейся к магнитному полю статора.

Режим отработки каждого шага должен соответствовать количеству импульсов управления, которые подаются на обмотки привода, а он при этом, до момента прихода следующего импульса, должен отработать заданный ему угол вращения. В начале каждого из шагов угловая двигательная скорость должна быть нулевой.

Допускаются колебания углового приводного вала по отношению к установившемуся значению. Они обуславливаются наличием кинетической энергии, которая накапливается двигательным валом во время отработки угла. При этом энергия способная преобразовываться в потери:

  • магнитные;
  • механические;
  • электрические.

Чем больше их величина, тем быстрее кончается процесс перехода отработки одного шага приводом.

При запуске ротор может иметь отставание от статорного потока на шаг и даже больше, вследствие чего получается расхождение между количеством роторных шагов и статорным потоком.

Ключевые характеристики шагового двигателя – это:

  • шаг;
  • предельная механическая характеристика;
  • приемистость.

Предельная характеристика представляет собой зависимость максимально возможного синхронизирующего момента от частот управляющих импульсов.

А приемистостью называется частота этих импульсов, которая исключает возможность потерь или добавлений шага во время обработки. Приемистость считается ключевым показателем режима перехода в двигателе. Она способна расти вместе с синхронизирующим моментом, снижением шага, инерционным моментом линейно перемещаемых или вращаемых частиц, а также статического момента сопротивления.

Особенности подключения шагового двигателя

Подключить двигатель шагового типа можно по той или иной схеме, которая зависит от количества проводов и способов запуска.

Двигатели могут иметь от четырех до восьми проводов. Если их всего четыре, то применение двигателя возможно только с биполярным устройством. Каждая фазная обмотка, которых всего две, оснащена двумя проводами. Определять проводные пары следует с использованием метра, затем подключается драйвер пошаговым методом.

Мотор, оснащенный шестью проводами, включает в себя два провода для каждой обмотки и центральный кран, тоже для каждой из них. Его можно подключать и к однополярному, и к биполярному устройству. Для разделения привода следует применять специальный прибор для измерения. К однополярному устройству привод можно подключать с использованием всех шести проводов, а к однополярному будет достаточного одного конца и одного центрального крана от каждой обмотки.

Пятипроводной мотор практически не отличается от предыдущего, однако, его центральные клеммы изнутри соединены как один сплошной кабель и имеют один выход к одному из проводов. Не следует отделять обмотки друг от друга, иначе можно их разорвать. Вместо этого лучше определить центр провода и соединить его с другими проводниками, это будет максимально эффективное решение подключения. После этого можете подключать само устройство и проверять его на работоспособность.

Ключевые технические характеристики двигателей

Первичная обмотка при постоянном токе создает номинальное напряжение. А первоначальная скорость крутящего момента привода меняется вместе с током. От того, какова схема двигателя и от индуктивности его обмоток зависит время снижения линейного момента на более высоких скоростях. Некоторые марки двигателей, имеющие степень защиты IP65, способны работать в самых трудных условиях.

Если вы желаете выбрать готовую модель шагового двигателя отечественного производства, обратите внимание на основные технические характеристики наиболее известных моделей:

  • ШД-1 – градус шага равен 15, 4 фазы, крутящий момент составляет 40 Нт;
  • ДШ-0,04А – градус шага 22,5, 4 фазы, крутящий момент 100 Нт;
  • ДШИ 200 – градус шага 1,8, 4 фазы, крутящий момент 0,25 Нт;
  • ДШ-6 – градус шага – 18, 4 фазы, крутящий момент 2300 Нт.

Также среди покупателей спросом пользуются такие модели, как:

  • четырехфазный ДШР-40;
  • SM-200-0.22;
  • Purelogic R&D с энкодером;
  • NEMA 23;
  • STH-39D1112;
  • SP-57;
  • SanyoDenkiSM28.

При подборе нужного двигателя, необходимо произвести расчет параметров мощности, напряжения и крутящего момента.

Одной из проблем работы шагового двигателя является управление приборов при отсутствии контроллера. Чтобы с этим справиться, следует взять специальный блок логической связи, помогающий управлять двигателем при отсутствии соответствующей микросхемы. Однако, лучше всего контролировать работу шаговых двигателей при помощи специального контроллера.

Описание

Шаговый электродвигатель

Первые шаговые двигатели появились в 30-х годах XIX века и представляли собой электромагнит, приводящий в движение храповое колесо. За одно включение электромагнита храповое колесо перемещается на величину зубцового шага храпового колеса. Храповые шаговые двигатели и в настоящее время находят довольно широкое применение.

Конструктивно шаговые электродвигатели состоят из статора, на котором расположены обмотки возбуждения, и ротора, выполненного из магнито-мягкого или из магнито-твёрдого материала. Шаговые двигатели с магнитным ротором позволяют получать больший крутящий момент и обеспечивают фиксацию ротора при обесточенных обмотках.

Таким образом по конструкции ротора выделяют следующие разновидности шагового двигателя:

  • с постоянными магнитами (ротор из магнитотвёрдого материала);
  • реактивный (ротор из магнитомягкого материала);
  • гибридный.

Гибридные двигатели сочетают в себе лучшие черты двигателей с переменным магнитным сопротивлением и двигателей с постоянными магнитами.

Статор гибридного двигателя также имеет зубцы, обеспечивая большое количество эквивалентных полюсов, в отличие от основных полюсов, на которых расположены обмотки. Обычно используются 4 основных полюса для 3,6-град. двигателей и 8 основных полюсов для 1,8-..0,9-град. двигателей. Зубцы ротора обеспечивают меньшее сопротивление магнитной цепи в определённых положениях ротора, что улучшает статический и динамический момент. Это обеспечивается соответствующим расположением зубцов, когда часть зубцов ротора находится строго напротив зубцов статора, а часть — между ними.

Ротор гибридного двигателя имеет зубцы, расположенные в осевом направлении. Ротор разделён на две части, между которыми расположен цилиндрический постоянный магнит. Таким образом, зубцы верхней половинки ротора являются северными полюсами, а зубцы нижней половинки — южными. Кроме того, верхняя и нижняя половинки ротора повёрнуты друг относительно друга на половину угла шага зубцов. Число пар полюсов ротора равно количеству зубцов на одной из его половинок. Зубчатые полюсные наконечники ротора, как и статор, набраны из отдельных пластин для уменьшения потерь на вихревые токи.

Шаговый электродвигатель NEMA 23

Использование

В машиностроении наибольшее распространение получили высокомоментные двухфазные гибридные шаговые электродвигатели с угловым перемещением 1,8°/шаг (200 шагов/оборот) или 0,9°/шаг (400 шаг/об). Точность выставления шага определяется качеством механической обработки ротора и статора электродвигателя. Производители современных шаговых электродвигателей гарантируют точность выставления шага без нагрузки до 5 % от величины шага.

Дискретность шага создаёт существенные вибрации, которые в ряде случаев могут приводить к снижению крутящего момента и возбуждению механических резонансов в системе. Уровень вибраций удаётся снижать при использовании режима дробления шага или при увеличении количества фаз.

Режим дробления шага (микрошаг) реализуется при независимом управлении током обмоток шагового электродвигателя. Управляя соотношением токов в обмотках можно зафиксировать ротор в промежуточном положении между шагами. Таким образом можно повысить плавность вращения ротора и добиться высокой точности позиционирования. Качество изготовления современных шаговых двигателей позволяет повысить точность позиционирования в 10-20 раз.

Шаговые двигатели стандартизованы национальной ассоциацией производителей электрооборудования (NEMA) по посадочным размерам и размеру фланца: NEMA 17, NEMA 23, NEMA 34, … — размер фланца 42 мм, 57 мм, 86 мм, 110 мм соответственно. Шаговые электродвигатели NEMA 23 могут создавать крутящий момент до 30 кгс*см, NEMA 34 до 120 кгс*см и до 210 кгс*см для двигателей с фланцем 110 мм.

Шаговый электродвигатель с интегрированным контроллером

Шаговые двигатели создают сравнительно высокий момент при низких скоростях вращения. Момент существенно падает при увеличении скорости вращения. Однако, динамические характеристики двигателя могут быть существенно улучшены при использовании драйверов со стабилизацией тока на основе ШИМ.

Шаговые электродвигатели применяются в приводах машин и механизмов, работающих в старт-стопном режиме, или в приводах непрерывного движения, где управляющее воздействие задаётся последовательностью электрических импульсов, например, в станках с ЧПУ. В отличие от сервоприводов, шаговые приводы позволяют получать точное позиционирование без использования обратной связи от датчиков углового положения.

Шаговые двигатели применяются в устройствах компьютерной памяти — НГМД, НЖМД, устройствах чтения оптических дисков.

Датчик поворота

Шаговые двигатели с постоянными магнитами могут использоваться в качестве датчиков угла поворота благодаря возникновению ЭДС на обмотках при вращении ротора. При этом, несмотря на удобство пользования и хорошую точность и повторяемость, необходимо учитывать, что:

  • Без вращения вала нет ЭДС; определить положение стоящего вала нельзя.
  • Возможна остановка вала в зоне неустойчивого равновесия (промежуточно между полюсами) ШД. Последующий пуск вала приведёт к тому, что, в зависимости от чувствительности компаратора, будет пропуск этого полюса, или два импульса вместо одного. В обоих случаях все дальнейшие отсчёты будут с ошибкой на один шаг. Для практически полного, но не 100 %, устранения такого поведения необходимо применить муфту с соответствующим гистерезисом (угловым люфтом).

Преимущества и недостатки

Преимущества

Главное преимущество шаговых приводов — точность. При подаче потенциалов на обмотки шаговый двигатель повернётся строго на определённый угол.
К приятным моментам можно отнести стоимость шаговых приводов, в среднем в 1,5-2 раза ниже сервоприводов. Шаговый привод, как недорогая альтернатива сервоприводу, наилучшим образом подходит для автоматизации отдельных узлов и систем, где не требуется высокая динамика. Можно отметить также длительный срок службы, порой сравнимый со временем морального устаревания или выработки ресурса всего станка; точность работы ШД за это время падает незначительно. Нетребовательны к техобслуживанию.

Недостатки

Возможность «проскальзывания» ротора — наиболее известная проблема этих двигателей. Это может произойти при превышении нагрузки на валу, при неверной настройке управляющей программы (например, ускорение старта или торможения не адекватно перемещаемой массе), при приближении скорости вращения к резонансной. Наличие датчика позволяет обнаружить проблему, но автоматически скомпенсировать её без остановки производственной программы возможно только в очень редких случаях. Чтобы избежать проскальзывания ротора, как один из способов, можно увеличить мощность двигателя.

> Примечания

  1. Кацман, 1979, с. 229.
  2. Шаговый двигатель. engineering-solutions.ru. Дата обращения 23 августа 2016.

Шаговый двигатель своими руками, принцип работы, схема подключения

Для работы любого электрического прибора, необходим специальный приводной механизм. Шаговый двигатель, является одним из таких устройств. Сегодня есть большой выбор разнообразных электродвигателей, разделяющихся по типу и по схеме драйвера, которым управляет контроллер.

Оглавление:

  • Что такое шаговый двигатель?
  • Принцип работы шагового двигателя
  • Модели шаговых двигателей
  • Гибридный двигатель
  • Как запустить шаговый двигатель, его управление
  • Как работает шаговый двигатель?
  • Техническая характеристика шагового двигателя

Шаговый двигатель — это синхронное электромеханическое устройство, которое передает сигнал управления в механическое движения ротора. Вращение происходит шагами, которые фиксируются в определенном положении.

Принцип работы шагового двигателя

При прикладывании напряжения к клеммам, щетки электродвигателя запускаются и начинают беспрерывно вращаться. Движок холостого хода обладает особым свойством, это превращение входящих импульсов прямоугольной направленности в заранее установленное положение приложенного ведущего вала.

Вал сдвигается под фиксированным углом с каждым импульсом. Если вокруг центрального куска железа зубчатой формы расположены несколько зубчатых электромагнитов, то устройства с таким редуктором достаточно эффективны. Микроконтроллер возбуждает электромагниты. Один зубчатый электромагнит под воздействием энергии притягивает зубья зубчатого колеса к своей поверхности, таким образом, вал двигателя делает поворот. Когда зубья выровнены по отношению к электромагниту, они немного смещаются к соседней магнитной детали.

Чтобы шестеренка начала вращение и выровнялась с предыдущим колесом, первый электромагнит отключается, а следующий включается. Затем весь процесс повторяется столько раз, сколько необходимо. Такое вращение называют постоянным шагом. Подсчитав количество шагов при полном обороте двигателя, определяется скорость его вращения.

Модели шаговых двигателей

Шаговые двигатели по конструкции ротора делятся на три типа: реактивный, с постоянными магнитами и гибридный.

  1. В настоящее время синхронные реактивные двигатели применяются редко. Их используют, когда нужен небольшой момент и слишком большой угол поворота шага. Ротор изготовлен из магнитомягкого материала с отчетливыми полюсами, имеет большой угол шага, при отсутствии тока нет фиксирующего момента. Это самый простой и дешевый двигатель. Статор состоит из шести полюсов и трех фаз, а ротор имеет четыре полюса. При этом шаг устройства составляет 30 градусов. Вращающееся магнитное поле создается последовательным включением фаз статора. Ротор за один шаг поворачивается на угол меньше угла статора, так происходит из-за меньшего количества полюсов.
  2. Двигатель с постоянными магнитами состоит из ротора на постоянных магнитах и статора с двумя фазами. В отличие от реактивных устройств, у двигателей на постоянных магнитах после снятия управляющего сигнала ротор фиксируется. Так, происходит благодаря большим вращающим моментам. Так как процесс изготовления ротора сопровождается большими технологическими трудностями (большое число полюсов+постоянные магниты), получается большой угловой шаг до 90 градусов. Это является их единственным недостатком. При работе с однополярной схемой управления обмотки в центре могут быть с ответвлением. Обмотки без центрального ответвления питаются через двуполярную схему управления. Исходя из этого устройство шагового двигателя разделяется на два типа по виду обмоток, униполярные и биполярные.

Униполярный. Изменять расположение магнитных полюсов можно, не меняя при этом направленность тока. Достаточно включить отдельно каждую фазу обмотки. Устройство состоит из одной обмотки на фазу с расположенным в центре ответвлением.

Биполярный . У таких двигателей на фазу приходится одна обмотка, нет общего вывода, а есть два — на фазу. Благодаря этому биполярные устройства обладают наибольшей мощностью, чем униполярные. Для изменения магнитных полярностей полюсов, в обмотке изменяют направления тока.

Гибридный двигатель

Чтобы уменьшить угол шага, был разработан гибридный шаговый двигатель. В свою конструкцию, он включает лучшие свойства двигателя с постоянными магнитами и реактивного двигателя. Ротор представлен в виде намагниченного вдоль продольной оси цилиндрического магнита. Статор состоит из двух или четырех фаз, которые размещены между парами явно выраженных полюсов.

Как запустить шаговый двигатель, его управление

Работа по подключению и управлению шагового двигателя будет зависеть от того, каким образом вы хотите запустить устройство и сколько проводов находится на приводе. Шаговые электродвигатели могут иметь от 4 до 8 проводов, поэтому для их подключения используют определенную схему.

  • С четырьмя проводами. Каждая фазная обмотка имеет по два провода. Чтобы подсоединить драйвер пошагово, нужно найти парные провода с непрерывной связью между ними. Такой двигатель используется только с биполярным прибором.
  • С пятью проводами. Центральные клеммы мотора внутри объединяются в сплошной кабель и выведены к одному проводу. Отделить обмотки друг от друга невозможно, так как появится много разрывов. Выйти из положения можно, если установить где находится центр провода и попытаться соединить его с другими проводниками. Это самый эффективный и безопасный режим. Затем устройство подключается и проверяется на работоспособность.
  • С шестью проводами. Каждая обмотка имеет несколько проводов и центр-кран. Для разделения провода применяют измерительный прибор. Мотор можно подключать к однополярному и биполярному устройству. При подключении к однополярному устройству используются все провода. Для биполярного устройства один конец провода и один центральный кран каждой обмотки.

Для управления шаговым двигателем требуется контроллер. Контроллер, это схема, подающая напряжение к одной из катушек статора. Контроллер изготовлен на базе интегральной микросхемы типа ULN 2003 включающей в себя комплект составных ключей. Каждый ключ имеет на выходе защитные диоды, которые, позволяют подключать индукционные нагрузки, не требуя дополнительной защиты.

Как работает шаговый двигатель?

Устройство может работать в трех режимах:

  • Микрошаговый режим. Устройства, работающие на микрошагововом режиме, являются новейшими разработками некоторых производителей и используются в основном в микроэлектронике или на промышленных конвейерах. Специальный чип создает такое напряжение, что вал становится в положение одной сотой шага, к примеру, на 1 оборот происходит 20 тыс. перемещений. Драйвер может создавать более 50 тысяч циклов управляющих напряжений на 1 оборот.
  • Половинный режим. Благодаря тому, что в режиме половинного шага уровень вибраций сокращается, такие устройства часто используются в промышленности. После того как одна фаза активируется, она замирает в таком положении до тех пор, пока не включится следующая. Получается промежуточное положение и на зуб воздействуют одновременно два полюса. Когда первая фаза отключается, ротор продвигается вперед на полшага.
  • Полный режим. Управляющее напряжение по очереди передается по всем фазам и получается полный шаг (на 1 оборот 200 перемещений).

Техническая характеристика шагового двигателя

В области электротехники и механики шаговый электродвигатель считается сложным устройством, которое включает в себя множество механических и электрических возможностей. На практике применяются следующие технические характеристики:

  1. Номинальный ток и напряжение. Максимально допустимый ток указан в механических параметрах электродвигателя. Номинальный ток, является главным электрическим параметром, при котором двигатель может работать сколько угодно времени. Номинальное напряжение указывают редко, его вычисляют по закону Ома. Оно показывает постоянное максимальное напряжение на обмотке двигателя, когда он находится в статическом режиме.
  2. Сопротивление фазы. Параметр показывает какое максимальное напряжение можно подавать на обмотку фазы.
  3. Индуктивность фазы. Насколько быстро будет увеличиваться ток в обмотке показывает этот параметр. Чтобы ток быстрее увеличивался при переключении фаз на высоких частотах, напряжение приходится делать больше.
  4. Число полных шагов за 1 оборот. Параметр показывает насколько электродвигатель точен, его плавность и допустимую способность.
  5. Вращающий момент. Механические данные показывают частоту вращения, которая зависит от момента вращения. Параметр указывает максимальное время вращения электродвигателя.
  6. Удерживающая фаза. Эта фаза показывает момент вращения при остановленном устройстве. Две фазы устройства должны быть запитаны номинальным током.
  7. Момент ступора. Во время отсутствия напряжения питания, он необходим для того, чтобы вал электродвигателя можно было провернуть.
  8. Время энерции ротора. Означает как быстро разгоняется двигатель. Чем показатель меньше, тем скорость разгона больше.
  9. Пробивное напряжение. Параметр относится к разделу электробезопасности и показывает наименьшее напряжение, пробивающее изоляцию между корпусом и обмотками устройства.

Принцип работы шаговых двигателей

Представьте себе двухполюсный постоянный магнит на валу двигателя – это ротор, окруженный замкнутым магнитопроводом с четырьмя обмотками — статор. Вернее это две обмотки AB и CD с половинками, расположенными на противоположных полюсах статора. Подключили к источнику напряжения обмотку AB (полярность + -) как показано на рисунке. Ток в этой обмотке вызовет появление магнитного поля статора с полюсами сверху N, снизу S. Как известно разноименные полюса магнитов притягиваются. В результате ротор (постоянный магнит) займет положение, в котором оси магнитных полей ротора и работающих полюсов статора совпадают. Механическое положение будет устойчивым. При попытке сдвинуть ротор, возникнет сила, возвращающая его назад. Теперь снимем напряжение с обмотки AB и подадим на обмотку CD (полярностью + -). Ток в обмотке CD вызовет магнитное поле с горизонтальными полюсами, слева S, справа N. Магнитное поле делает все, чтобы магнитный поток замкнулся по минимальному пути. Ротор повернется в положение указанное на рисунке. Механическое положение ротора опять устойчивое. Это был первый шаг двигателя. В нашем случае он равен одной четвертой оборота. Отключаем обмотку CD и подаем напряжение опять на обмотку AB, но уже в другой полярности (- +). Опять магнитное поле статора повернется на 90°, а за ним и ротор. Еще одна коммутация AB — отключаем, CD — подключаем (полярность — +) и ротор совершает еще один шаг на одну четвертую окружности. Следующая коммутация (с которой мы начали) вернет ротор в исходное положение. Мы сделали полный поворот за 4 шага. Если продолжить переключение фаз, ротор будет вращаться с частотой, пропорциональной частоте переключения фазных обмоток. Если коммутировать фазы в противоположной последовательности – крутиться в обратном направлении, прекратить коммутацию — остановится.

Биполярные и униполярные шаговые двигатели

Это был биполярный шаговый двигатель. Биполярный двигатель имеет по одной обмотке для каждой фазы. На предыдущих рисунках это обмотки AB и CD. Для изменения магнитного поля должна обеспечиваться сложная коммутация обмоток. Каждая обмотка: • отключается от источника напряжения, • подключается в прямой полярности • подключается с противоположной полярностью. Для такой коммутации требуется сложный мостовой драйвер. Примером такого устройства является микросхема L298N. Микросхема обеспечивает ток коммутации до 2 А. Если нужны большие токи, то задача управления биполярным двигателем еще усложняется. Существует другой способ изменения магнитного поля в статоре с гораздо более простой схемой коммутации. Это применение двигателя с униполярными обмотками. Схема двух фазного шагового двигателя с униполярными обмотками и последовательность коммутаций обмоток выглядит так. У всех четырех обмоток один вывод подключен к плюсовому выводу источника питания. А другие выводы A,B,C,D последовательно коммутируются к минусовому сигналу. Соответствующие обмотки создают магнитное поле, и ротор поворачивается вслед за ним. Для коммутации обмоток таким способом достаточно четырех ключей, замыкающих обмотки на землю. Ключи часто управляются непосредственно с выводов микроконтроллеров. Иногда средние выводы обмоток конструктивно объединены внутри двигателя, иногда выводятся все выводы отдельно. Кстати, это не повод называть двигатель четырехфазным. Все равно он будет двухфазным. Биполярный двигатель обеспечивает, при тех же размерах, больший крутящий момент, по сравнению с униполярным. Оно и понятно. Одновременно в униполярном двигателе работает только одна обмотка, вместо двух. Выигрыш в моменте у биполярного составляет около 40%. Зато, если нет необходимости использовать двигатель на полную мощность, униполярным двигателем гораздо проще управлять.

Разновидности шаговых двигателей

Основные виды шаговых двигателей: • с переменным магнитным сопротивлением • с постоянными магнитами • гибридные.

Шаговые двигатели с переменным магнитным сопротивлением

У двигателей с переменным магнитным сопротивлением в роторе нет постоянных магнитов. Их ротор выполнен из магнитомягкого материала и имеет зубчатую форму. Магнитный поток замыкается через ближайшие к полюсам статора зубцы. Зубцы притягиваются к полюсам. Этим и обеспечивается вращение. При тех же размерах, двигатели с переменным магнитным сопротивлением имеют меньший крутящий момент, чем другие типы шаговых двигателей. Применяются они довольно редко. Я знаю только одну фирму, которая использовала такие двигатели. Я разрабатывал управление для них. Выбор двигателей именно с переменным магнитным сопротивлением был обусловлен тем, что фирма сама изготавливала все детали двигателя. А сделать ротор для привода такого вида намного проще, потому что в нем не используются постоянные магниты.

Двигатели с постоянными магнитами

У шаговых двигателей этого вида ротор содержит постоянные магниты. Общий принцип действия шагового двигателя я объяснял на двигателе с постоянным магнитом. Только в реальных двигателях магнитов больше. Вот пример двигателя с тремя парами полюсов ротора. У реальных двигателей с постоянными магнитами число шагов на оборот доходит до 48, что соответствует углу шага 7,5 °.

Гибридные двигатели

Гибридные двигатели обеспечивают меньшую величину шага, больший момент и скорость. Число шагов на оборот для такого типа двигателей доходит до 400 (угол шага 0,9°). При этом они более сложные в изготовлении и более дорогие. Я не хочу забивать читателю голову конструкцией этих двигателей. У них есть и зубчатый ротор, и постоянные магниты. По принципу действия гибридные двигатели эквивалентны двигателям с постоянными магнитами, но с гораздо большим числом полюсов. Это самый распространенный тип шаговых двигателей. Существуют три режима управления шаговым двигателем: • полношаговый • полушаговый • микрошаговый. Первый способ был описан в примерах выше. Это попеременная коммутация фаз, фазы не перекрываются, в каждый момент времени к источнику напряжения подключена только одна фаза. Способ называется на английском one phase on full step – одна фаза на полный шаг. Точки равновесия ротора совпадают с полюсами статора. Недостатком этого режима является то, что в один и тот же момент используется половина обмоток для биполярного двигателя, и только четверть для униполярного. Есть вариант полношагового режима управления при котором в одно и то же время включены две фазы. Называется two-phase-on full step – две фазы на полный шаг. При таком способе ротор фиксируется между полюсами статора за счет подачи питания на все обмотки. Это позволяет увеличить крутящий момент двигателя на 40%. Угол шага не меняется, просто ротор в состоянии равновесия смещен на пол шага. Этот способ позволяет от двигателя получить в два раза больше шагов на оборот ротора. Каждый второй шаг включается одна фаза, а между ними — включаются сразу две. В результате такой коммутации угловое перемещение шага уменьшается в два раза, или в два раза увеличивается число шагов. Полный момент получить в полушаговом режиме не удается. Не смотря на это, полушаговый режим используется часто. Уж очень простыми методами он удваивает число шагов двигателя. Надо помнить, что для обоих режимов справедливо то, что при остановке двигателя со снятием напряжения со всех фаз, ротор двигателя находится в свободном состоянии и может смещаться от механических воздействий. Чтобы зафиксировать положение ротора, необходимо формировать в обмотках двигателя ток удержания. Этот ток может быть значительно меньше номинального. Способность шагового двигателя фиксировать свое положение при остановке позволяет обходиться без механических фиксаторов, тормозных систем и т.п.

Микрошаговый режим

Для получения еще большего числа шагов двигателя применяют микрошаговый режим. Включают две фазы, как на полушаговом режиме, но токи обмоток распределяют не равномерно. Магнитное поле статора смещается между полюсов, смещается и положение ротора. Как правило, диспропорция токов между рабочими фазами происходит с определенной дискретностью, микрошагом. Бывают микрошаги с величиной треть от полного шага. Бывают значительно больше. Я разрабатывал систему управления индукторным приводом, так там было больше 1000 микрошагов. Микрошаговый режим способен значительно повысить точность позиционирования шагового двигателя. Хотя система управления приводом становится намного сложнее.

Недостатки и достоинства шаговых двигателей

Преимущества шаговых двигателей. • Точное позиционирование без обратной связи. Число импульсов определяет угол поворота. • Двигатель обеспечивает полный крутящий момент при снижении скорости вращения, вплоть до остановки. • Двигатель фиксирует свое положение при остановке за счет тока удержания. • Регулировка скорости вращения с высокой точностью без обратной связи. • Способность быстрого старта, остановки, реверса. • Высокая надежность. Отсутствие коллекторных щеток. Недостатки шаговых двигателей. • Сложная система управления. • Невысокие скорости вращения. • Возможно явление резонанса. • Может произойти потеря позиционирования при механических перегрузках. • Низкая удельная мощность. Как и всему на свете шаговому двигателю присущи определенные достоинства и недостатки. Но есть области в точной механике, в которых он просто незаменим. Там где надо перемещать механические узлы, мгновенно останавливать, двигать назад, регулировать скорость… Попробуйте мгновенно остановить коллекторный двигатель, и вы забудете о недостатках шагового. Попробуйте реализовать изменение скорости коллекторного двигателя в широких пределах. Проще поставить шаговый с его недостатками.

Характеристики шаговых двигателей

Шаговый двигатель с точки зрения механики и электротехники очень сложное устройство, имеющее много механических и электрических параметров. Приведу расшифровку основных технических параметров, которые используются на практике. ✔ Количество полных шагов за один оборот. Основной параметр двигателя, определяющий его точность, разрешающую способность, плавность движения. На двигателях серии FL57 этот параметр составляет 200 и 400 шагов на оборот. ✔ Угол полного шага. Представление в другом виде предыдущего параметра. Показывает на какой угол повернется вал при одном полном шаге. Может быть подсчитан как 360° / количество полных шагов за оборот. Для двигателей серии FL57 составляет 1,8 ° и 0,9°. ✔ Номинальный ток. Основной электрический параметр. Наибольший допустимый ток, при котором электродвигатель может работать сколь угодно длительное время. Для этого тока указаны механические параметры двигателя. ✔ Номинальное напряжение. Допустимое постоянное напряжение на обмотке двигателя в статическом режиме. Часто этот параметр не приводится. Вычисляется по закону Ома через номинальный ток и сопротивление обмотки. Сопротивление обмотки фазы. Сопротивление обмотки двигателя на постоянном токе. Параметр вместе с номинальным током, показывает какое напряжение можно подавать на обмотку двигателя. ✔ Индуктивность фазы. Параметр становится важным на значительных скоростях вращения. От него зависит скорость нарастания тока в обмотке. При высоких частотах переключения фаз приходится увеличивать напряжение, чтобы ток нарастал быстрее. ✔ Крутящий момент. Основной механический параметр. Показывает максимальный крутящий момент, который способен создать двигатель. Иногда приводится механическая характеристика в виде зависимости крутящего момента от частоты вращения. ✔ Момент инерции ротора. Характеризует механическую инерционность ротора двигателя. Чем этот параметр меньше, тем двигатель быстрее разгоняется. ✔ Удерживающий момент. Это крутящий момент при остановленном двигателе. При этом у двигателя должны быть запитаны две фазы номинальным током. ✔ Стопорный момент. Момент, необходимый чтобы провернуть вал двигателя при отсутствующем напряжении питания. ✔ Сопротивление изоляции. Как у всех электрических приборов – сопротивление между корпусом и обмотками. ✔ Пробивное напряжение. Минимальное напряжение, при котором происходит пробой изоляции между обмотками и корпусом. Параметр из раздела электробезопасности.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *