Опубликовано

Инвертор с чистой синусоидой

Инвертор, преобразователь, чистая синусоида, синус

Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы запитать бытовые и специальные электроприборы. Применяем инвертор и оригинальную схему фильтра. (10+)

Получаем синусоиду от инвертора

1 2 3 4

Оглавление :: ПоискТехника безопасности :: Помощь

Предлагаю Вашему вниманию устройство, позволяющее получить синусоидальное напряжение 220 вольт приемлемого качества, от автомобильной системы электропитания 12 вольт. Максимальная нагрузка 1.5 кВт. В устройстве используется инвертор промышленного производства на 1.5 кВт с выходным напряжением в форме прямоугольных импульсов. Такие инверторы сейчас достаточно распространены. Далее к инвертору подключен фильтр, об изготовлении которого настоящая статья.

Внимание. Перед подключением фильтра необходимо убедиться, что Ваш инвертор рассчитан на подключение индуктивной и емкостной нагрузки, выдает напряжение частотой 50 Гц. Некоторые инверторы работают на частоте 60 Гц. Большинству устройств это безразлично, но контура тогда надо настраивать на эту частоту, что довольно сложно, так как в нашей местности отсутствуют мощные источники такого синусоидального напряжения, которое нам понадобится для наладки фильтра.

Внимание. Во время сборки и наладки фильтра Вам предстоит контакт с высоким напряжением, опасным для жизни и здоровья. Убедитесь, что Вы располагаете достаточными знаниями и навыками, которые обеспечат Вашу безопасность и безопасность людей, которые впоследствии будут эксплуатировать устройство.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Здесь можно прочитать Отзыв. Практический опыт повторения конструкции

Также одному из читателей был нужен выход 40 кГц 220 В 1 кВт. Здесь можно прочитать о том, как указанная конструкция была адаптирована под данные требования (прежде всего частоту). Опыт повторения резонансного фильтра для получения мощной синусоиды 40 кГц.

Потребность в синусоидальном напряжении от инвертора

Мы провели эксперимент, запитав разные устройства, которые находились в нашем распоряжении, от инвертора промышленного изготовления, на выходе которого формируется напряжение прямоугольной формы с нулевыми паузами между импульсами. Большинство инверторов выдает в нагрузку именно такой ток.

Устройства с импульсными блоками питания, на входе которых стоит выпрямитель, такие как телевизор, спутниковая связь, компьютер. Эти устройства некоторое время работали, но в их блоках питания слышался посторонний шум и наблюдался нагрев входных фильтров до опасных температур.

Электродвигатели (холодильник, циркуляционный насос) вращались, но возникали сильные вибрации, которые могли разрушить устройство, или в любом случае сокращали срок его службы.

Горелка отопителя, медицинское оборудование не включались. Загоралась лампочка аварийной остановки.

Осветительные энергосберегающие лампочки работали, но с посторонним шумом.

Нормально работал только электроинструмент с коллекторно — щеточными электродвигателями, такой, как дрель, болгарка, электрокоса.

Стало ясно, что если мы хотим использовать двенадцати-вольтовую сеть автомобиля для резервного питания бытовых и специальных потребителей, а именно такая задача перед нами стояла, то нам придется сделать преобразователь выходного напряжения инвертора в синусоидальное приемлемого качества. При этом нам хотелось, чтобы преобразователь был устойчив к перегрузкам и не создавал импульсных помех, к которым чувствительны наши потребители.

:: (в начало статьи)

1 2 3 4

Оглавление :: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

1.Спасибо за статью. 2.У меня проблема с бензогенератором, который покупался для аварийного питания газового котла. Генератор однофазный, щеточный, 0.9/1.1квт. Одно время он даже работал с котлом, я имею ввиду систему проверки пламени. Но потом котел перестал распознавать горение. 5 циркуляционных насосов по звуку работают нормально. Осциллографа у меня нет, поэтому точно при Читать ответ…

Здравствуйте! Скажите, пожалуйста, можно ли использовать Ваш силовой резонансный фильтр для инвертора, у которого на выходе переменный прямоугольный сигнал (меандр) напряжением 12 Вольт? Если да, то как его правильно рассчитать??? С уважением, Леонид Григорьевич. Читать ответ…

Делаю резонансный фильтр, 400 Вт для котла, на сердечниках от трансформатора ТСА-180, конденсаторы 25х450в. Можно ли сделать обмотку как на трансформаторе состоящую из двух обмоток? По расчету для последовательного контура мне нужно 1436 витков, соответственно 1436/2=718 витков на каждую катушку и соединить их последовательно. Читать ответ…

Уважаемый автор статьи ‘резонансный фильтр’, дайте знать, пожалуйста, когда будете онлайн, хотелось бы с вами пообщаться. Дмитрий Читать ответ…

Здравствуйте. Спасибо большое за нужную мне информацию.Вопрос таков : вы писали :’Чтобы получить нужный нам дроссель, в сердечнике придется сделать зазор’ . Если есть подходящая индуктивность в виде трансформатора, обязательно ли делать зазор если контур можно настроить подбором конденсатора? Спасибо. Читать ответ…

Касательно расчетов. В исходных данных вводится сечение одного магнитопровода, в результате расчета онлайн имеем параметры для двух дросселей, для меня непонятна логика расчета. Что принимать за исходный параметр: сечение одного из магнитопроводов, если их два, могут ли быть не одинаковыми, если да, то что вводить, меньшее, большее, среднеарифметическое, суммарное. Читать ответ…

Я собрал киловаттный фильтр (последовательный контур) на базе дросселя Днат400, расчеты и экспериментальные данные могу предоставить. Хочу проконсультироваться у Вас по вопросу параллельного контура. Если я правильно понял, то ток через дроссель и емкость параллельного контура ограничивается сопротивлением дросселя (полным). Можно использовать первичную обмотку трансформат Читать ответ…

Здравствуйте! Можно-ли подключить такой фильтр к бензиновому генератору 2,5кВт Читать ответ…

Какой тип трансформаторного сердечника использовать? Читать ответ…

Могу ли я приобрести две настроенные катушки? Читать ответ…

Еще статьи

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида…
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…

устройство для резервного, аварийного, запасного питания котла, циркул…
У меня установлен газовый отопительный турбо котел, требующий электропитания. Кр…

Силовой мощный импульсный трансформатор, дроссель. Намотка. Изготовить…
Приемы намотки импульсного дросселя / трансформатора….

Генератор синусоидального напряжения, сигнала, синуса, синусоиды. Гир…
Расчет гиратора и генератора синусоидального сигнала на нем….

Защита силового ключа от перенапряжения. Сброс скачков напряжения на т…
Как защитить силовой транзистор от пробоя броском высокого напряжения. Описание …

Полумостовой импульсный стабилизированный преобразователь напряжения, …
Полумостовой преобразователь напряжения сети. Схема, онлайн расчет. Форма для вы…

Схемотехника — тиристорные, динисторные, симисторные, тринисторные схе…
Схемотехника тиристорных устройств. Практические примеры. …

Проверка дросселя, катушки индуктивности, трансформатора, обмотки, эле…
Как проверить дроссель, обмотки трансформатора, катушки индуктивности, электрома…

DC/AC преобразователь с синусоидальным выходным напряжением

Большинство известных преобразователей постоянного напряжения в переменное имеют выходной сигнал прямоугольной формы. Однако крутые фронты прямоугольных импульсов созда­ют сильные помехи. Двигатели переменного тока при питании их прямоугольным напряжением сильно шумят, нагреваются и имеют низкий КПД. Эти проблемы устраняются, если питать нагрузку синусоидальным напряжением.

Известны компьютерные источники беспере­бойного питания с микропроцессорным управле­нием, имеющие «синусоиду» на выходе. Широко­го распространения они не получили из-за боль­шой стоимости (в разы большие, чем обычные преобразователи напряжения). Но многие потре­бители (и я в том числе) не имеют возможности использовать такую дорогую технику.

Для получения «синусоиды» на выходе преоб­разователя обычно используют широтно-им­пульсную модуляцию. Мне хотелось получить «синусоиду» на выходе преобразователя напря­жения без использования микропроцессора и программатора, т.е. наиболее простым аппарат­ным способом. Однако проблема заключается в том, что параметры широтно-импульсной модуляции необходимо изменять в каждом полупериоде синусоидального напряжения.

На рис.1 показана принципиальная электрическая схема преобразователя напряжения постоянного напряжения в переменное, с синусоидальным выходом на базе обычных цифровых микросхем. Схема разработана таким образом, чтобы устройство мог повторить практически любой радиолюбитель.

Преобразователь выполнен по схеме полного моста, выполненного на четырех транзисторах VT1-VT4. Синусоидальный выходной сигнал формируется методом широтно-импульсной модуляции. Управляется мост двумя высокочастотными драйверами типа IR2110, способными перезаряжать затворы полевых транзисторов током до 2 А. Напряжение питания этих драйверов должно находиться в пределах 10…15 В. При снижении напряжения ниже 10 В драйвер отказывается работать, так как он имеет встроенную схему контроля питающего напряжения. Повышение напряжения выше 15 В приводит к выходу из строя драйверов или затворов полевых транзисторов.

Рис. 1

Максимальное напряжение между затвором и истоком указанных на схеме транзисторов составляет 20 В.

Задающий генератор преобразователя вы­полнен на микросхеме DA1. Частота его колеба­ний определяется величиной резистора R1, а скважность импульсов равная 2 достигается ус­тановкой движка резистора R1 в нужное положе­ние. Выходной сигнал с задающего генератора поступает на две последовательно соединенные интегрирующие цепочки R5C3 и R6C2, а также на одновибратор, выполненный на D-триггере мик­росхемы DD1.1. Выходной сигнал интегрирую­щей цепочки представляет собой приближенную синусоиду с периодом в 10 мс. Выходной сигнал одновибратора — прямоугольный импульс дли­тельностью 0,5 мс и периодом в 10 мс. Длитель­ность импульса можно регулировать, изменяя величину резистора R7.

На D-триггере микросхемы DD1.2 построен делитель частоты на 2, т.е. период его выходного сигнала равен 20 мс (частота 50 Гц). Из прямых и инверсных выходных сигналов триггера DD1.2 и выходного сигнала одновибратора DD1.1 логиче­ские элементы DD3.1 и DD3.2 формируют сигна­лы управления силовыми ключами моста.

Широтно-импульсный модулятор построен на микросхеме DD3, содержащей два инвертора b полевые (р-канальные и n-канальные) транзисто­ры. Западный аналог этой микросхемы — CD4007. Выходное сопротивление транзисторов этой ИМС почти линейно зависит от входного на­пряжения. На инверторах DD3.1 и DD3.3 выпол­нен мультивибратор по стандартной схеме. По­левые транзисторы включены через диоды VD3-VD4 параллельно резистору R8. При высо­ком уровне на выходе генератора диод VD4 будет проводить, т.е. выходное сопротивление p-канала транзистора будет включено параллельно с резистором R8. Подобным образом выходное сопротивление n-канала транзистора включается параллельно резистору R8 при низком уровне на выходе генератора.

Широтно-импульсный модулятор реализуется изменением скважности импульсов генератора в соответствии с входным напряжением, посту­пающим с интегрирующей цепочки R5С3, R6С2. Само изменение частоты колебаний ми­нимально зависит от скважности, так как вы­ходное сопротивление одного транзистора возрастает, а другого всегда уменьшается при любой величине управляющего напряжения. Таким образом, среднее за период значение шунтирующего резистор R8 сопротивления остается постоянным.

Частота колебаний генератора соответст­вует 2 кГц. Увеличение управляющего напря­жения, поступающего на модулятор, приводит к увеличению длительности выходных импуль­сов. Уменьшение управляющего напряжения к уменьшению длительности импульсов выход­ного сигнала. Частота колебаний остается неизменной.

Рис. 2

На рис. 2 показаны временные диаграммы сигналов в определенных точках преобразова­теля:

  • выходной сигнал задающего генератора;
  • выходной сигнал одновибратора;
  • выходной сигнал делителя на 2 (DD2) вывод 13;
  • инверсный выходной сигнал делителя на 2 (DD2) вывод 12;
  • результат сложения прямого сигнала де­лителя на 2 и выходного сигнала однови­братора;
  • результат сложения инверсного сигнала делителя на 2 и выходного сигнала одно­вибратора;
  • выходной сигнал логического элемента DD1 без высокочастотного заполнения с широтно-импульсного модулятора;
  • с высокочастотным заполнением;
  • выходной сигнал логического элемента DD2 без высокочастотного заполнения с широтно-импульсного модулятора;
  • с высокочастотным заполнением;
  • сигнал на первичной обмотке трансформа­тора ТV

От длительности импульса одновибратора (диаграмма 2 на рис.2) зависит величина вре­менной паузы между включением ключей. Это необходимо для того, чтобы силовые ключи не оказались открытыми одновременно.

Диоды VD7-VD10 устанавливаются в том случае, когда силовые транзисторы не имеют внутреннего диода.

Мощность преобразователя зависит от типа примененных полевых транзисторов. Полевые транзисторы, а также транзисторы IGBT можно ставить параллельно для увеличения мощности преобразователя. Если требуется преобразователь напряжения на другую частоту, например на 400 Гц, то необходимо изменить частоту задаю­щего генератора и довести ее до 800 Гц, путем уменьшения сопротивления резистора R1. Кроме этого необходимо уменьшить сопротивление резистора R6, чтобы уменьшить величину временной паузы между импульсами. Частота широтно-импульсного модулятора также должна быть увеличена до 5 кГц, путем уменьшения емкости конденсатора С4 до 470 пФ.

Трансформатор TV1 должен быть выбран на соответствую­щую рабочую частоту преобразо­вателя.

Дроссель L1 служит для устра­нения влияния работы силовых ключей на питающее напряжение платы управления. Диод VD11 препятствует разряду конденса­тора С6 на источник питания пре­образователя в момент включения силовых клю­чей. Драйверы DА2 и DА3 имеют вход SD, при по­даче на который сигнала высокого уровня они за­пираются, и преобразователь не работает. Это можно использовать для защиты преобразовате­ля от перегрузки.

Печатная плата преобразователя имеет раз­меры 105×51 мм. Ее чертеж, расположение эле­ментов и перемычек на ней приведен на рис.3.

Рис. 3

Литература

  1. Широтно-импульсный модулятор на одной КМОП микросхеме // Электроника. — 1977. — №13. — С.55.

Вячеслав Калашник, г. Воронеж
Источник: Радиоаматор №6/2016

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *