Опубликовано

Электролиз

Электролиз в промышленности

Важнейшее применение электролиз находит в металлургической и химической промышленности и в гальванотехнике.

В металлургической промышленности электролизом расплавленных соединений и водных растворов получают металлы, а также производят электролитическое рафинирование — очистку металлов от вредных примесей и извлечение ценных компонентов.

Электролизом расплавов получают металлы, имеющие сильно отрицательные электродные потенциалы, и некоторые их сплавы.

При высокой температуре электролит и продукты электролиза могут вступать во взаимодействие друг с другом, с воздухом, а также с материалами электродов и электролизера. В результате этого простая, в принципе, схема электролиза (например, электролиз MgCl2 при получении магния) усложняется.

Электролитом обычно служат не индивидуальные расплавленные соединения, а их смеси. Важнейшим преимуществом смесей является их относительная легкоплавкость, позволяющая проводить электролиз при более низкой температуре.

В настоящее время электролизом расплавов получают алюминий, магний, натрий, литий, бериллий и кальций. Для получения калия, бария, рубидия и цезия электролиз расплавов практически не применяется из-за высокой химической активности этих металлов и большой их растворимости в расплавленных солях. В последние годы электролизом расплавленных сред получают некоторые тугоплавкие металлы.

Электролитическое выделение металла из раствора называется электроэкстракцией. Руда или обогащенная руда — концентрат (см. § 192) — подвергается обработке определенными реагентами, в результате которой металл переходит в раствор. После очистки от примесей раствор направляют на электролиз. Металл выделяется на катоде и в большинстве случаев характеризуется высокой чистотой. Этим методом получают главным образом цинк, медь и кадмий.

Электролитическому рафинированию металлы подвергают для удаления из них примесей и для перевода содержащихся в них компонентов в удобные для переработки продукты. Из металла, подлежащего очистке, отливают пластины и помещают их в качестве анодов в электролизер. При прохождении тока металл подвергается анодному растворению — переходит в виде катионов в раствор. Далее катионы металла разряжаются на катоде, образуя компактный осадок чистого металла. Содержащиеся в аноде примеси либо остаются нерастворен- ными, выпадая в виде анодного шлама, либо переходят в электролит, откуда периодически или непрерывно удаляются.

Рассмотрим в качестве примера электрорафинирование меди. Основным компонентом раствора служит сульфат меди — наиболее распространенная и дешевая соль этого металла. Но раствор CuSO4 обладает низкой электрической проводимостью. Для ее увеличения в электролит добавляют серную кислоту. Кроме того, в раствор вводят небольшие количества добавок, способствующих получению компактного осадка металла.

Металлические примеси, содержащиеся в неочищенной («черновой») меди, можно разделить на две группы:

  • 1) Fe, Zn, Ni, Со. Эти металлы имеют значительно более отрицательные электродные потенциалы, чем медь. Поэтому они анодно растворяются вместе с медью, но не осаждаются на катоде, а накапливаются в электролите. В связи с этим электролит периодически подвергают очистке;
  • 2) Au, Ag, Pb, Sn. Благородные металлы (Au, Ag) не претерпевают анодного растворения, а в ходе процесса оседают у анода, образуя вместе с другими примесями анодный шлам, который периодически извлекается. Олово же и свинец растворяются вместе с медью, но в электролите образуют малорастворимые соединения, выпадающие в осадок и также удаляемые.

Электролитическому рафинированию подвергают медь, никель, свинец, олово, серебро, золото.

К гальванотехнике относятся гальваностегия и гальванопластика. Процессы гальваностегии представляют собой нанесение путем электролиза на поверхность металлических изделий слоев других металлов для предохранения этих изделий от коррозии, для придания их поверхности твердости, а также в декоративных целях. Из многочисленных применяемых в технике гальванотехнических процессов важнейшими являются хромирование, цинкование и никелирование.

Сущность гальванического нанесения покрытий состоит в следующем. Хорошо очищенную и обезжиренную деталь, подлежащую защите, погружают в раствор, содержащий соль того металла, которым ее необходимо покрыть, и присоединяют в качестве катода к цепи постоянного тока; при пропускании тока на детали осаждается слой защищающего металла. Наилучшая защита обеспечивается мелкокристаллическими плотными осадками. Такие осадки обладают, кроме того, лучшими механическими свойствами.

Гальванопластикой называются процессы получения точных металлических копий с рельефных предметов электроосаждением металла. Путем гальванопластики изготовляют матрицы для прессования различных изделий (граммофонных пластинок, пуговиц и др.), матрицы для тиснения кожи и бумаги, печатные радиотехнические схемы, типографские клише. Гальванопластику открыл русский академик Б. С. Якоби (1801—1874) в 30-х гг. XIX в.

К гальванотехнике относятся также другие виды электрохимической обработки поверхности металлов: электрополирование стали, оксидирование алюминия, магния. Последнее представляет собой анодную обработку металла, в ходе которой определенным образом изменяется структура оксидной пленки на его поверхности. Это приводит к повышению коррозионной стойкости металла. Кроме того, металл приобретает при этом красивый внешний вид.

В химической промышленности методом электролиза получают различные продукты: к числу их относятся фтор, хлор, едкий натр, водород высокой степени чистоты, многие окислители, в частности пероксид водорода.

Электролиз

Эта страница требует существенной переработки. Возможно, её необходимо викифицировать, дополнить или переписать.
Пояснение причин и обсуждение — на странице Википедия:К улучшению/10 апреля 2018.

Схематическое изображение электролитической ячейки для исследования электролиза

Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор, либо расплав электролита.

Электролиз является одним из лучших способов золочения или покрытия металла медью, золотом и т.д.

Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создаётся электродами — проводниками, соединёнными с полюсами источника электрической энергии. Катодом при электролизе называется отрицательный электрод, анодом — положительный. Положительные ионы — катионы (ионы металлов, водородные ионы, ионы аммония и др.) — движутся к катоду, отрицательные ионы — анионы (ионы кислотных остатков и гидроксильной группы) — движутся к аноду.

Реакции, происходящие при электролизе на электродах, называются вторичными. Первичными являются реакции диссоциации в электролите. Разделение реакций на первичные и вторичные помогло Майклу Фарадею установить законы электролиза.

Первый закон Фарадея

Основная статья: Законы электролиза Фарадея

В 1832 году Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит:

m = k ⋅ q = k ⋅ I ⋅ t {\displaystyle m=k\cdot q=k\cdot I\cdot t} ,если через электролит пропускается в течение времени t постоянный ток с силой тока I.

Коэффициент пропорциональности k {\displaystyle k} называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Вывод закона Фарадея

m = m i N i {\displaystyle m=m_{i}N_{i}} (1) m i = M / N a {\displaystyle m_{i}=M/N_{a}} (2) N i = Δ q q i {\displaystyle N_{i}={\frac {\Delta q}{q_{i}}}} (3) Δ q = I Δ t {\displaystyle \Delta q=I\Delta t} (4) q i = e z {\displaystyle q_{i}=ez} , (5) где z — валентность атома (иона) вещества, e — заряд электрона Подставляя (2)-(5) в (1), получим m = M z e N A I Δ t {\displaystyle m={\frac {M}{zeN_{A}}}I\Delta t} m = M z F I Δ t {\displaystyle m={\frac {M}{zF}}I\Delta t} ,

где F = e N A {\displaystyle F=eN_{A}} — постоянная Фарадея.

k = M F z {\displaystyle k={\frac {M}{Fz}}} m = k I Δ t {\displaystyle m=kI\Delta t}

Второй закон Фарадея

Электрохимические эквиваленты различных веществ пропорциональны их молярным массам и обратно пропорциональны числам, выражающим их химическую валентность.

Химическим эквивалентом иона называется отношение молярной массы A {\displaystyle A} иона к его валентности z {\displaystyle z} . Поэтому электрохимический эквивалент

k = 1 F ⋅ A z {\displaystyle k\ =\ {1 \over F}\cdot {A \over z}} ,

где F {\displaystyle F} — постоянная Фарадея.

Второй закон Фарадея записывается в следующем виде:

m = M ⋅ I ⋅ Δ t n ⋅ F {\displaystyle m={\frac {M{\cdot }I{\cdot }{\Delta }t}{n{\cdot }F}}} , где M {\displaystyle M} — молярная масса данного вещества, образовавшегося (однако не обязательно выделившегося — оно могло и вступить в какую-либо реакцию сразу после образования) в результате электролиза, г/моль I {\displaystyle I} — сила тока, пропущенного через вещество или смесь веществ (раствор, расплав), А Δ t {\displaystyle {\Delta }t} — время, в течение которого проводился электролиз, с F {\displaystyle F} — постоянная Фарадея, Кл·моль−1 n {\displaystyle n} — число участвующих в процессе электронов, которое при достаточно больших значениях силы тока равно абсолютной величине заряда иона (и его противоиона), принявшего непосредственное участие в электролизе (окисленного или восстановленного) Однако это не всегда так; например, при электролизе раствора соли меди(II) может образовываться не только свободная медь, но и ионы меди(I) (при небольшой силе тока).

Примеры

Расплавы

Активные металлы, менее активные металлы и неактивные металлы в расплавах ведут себя одинаково.

Соль активного металла и бескислородной кислоты Соль активного металла и кислородсодержащей кислоты Гидроксид: активный металл и гидроксид-ион
NaCl ⟷ Na + + Cl − {\displaystyle {\ce {NaCl <-> Na+ + Cl-}}}

K(-): Na + + e − = Na 0 {\textstyle {\ce {Na+ + e- = Na^0}}}

A(+): Cl − − e − ⟶ Cl 0 ⟶ Cl 2 {\displaystyle {\ce {Cl- — e- -> Cl^0 -> Cl2}}}

Вывод: 2 NaCl ⟶ 2 Na + Cl 2 {\displaystyle {\ce {2NaCl -> 2Na + Cl2 ^}}}

Na 2 SO 4 ⟷ 2 Na + + SO 4 2 − {\displaystyle {\ce {Na2SO4 <-> 2Na+ + SO4^2-}}}

K(-): 2 Na + + 2 e − = 2 Na 0 {\displaystyle {\ce {2Na+ + 2e- = 2Na^0}}}

A(+): 2 SO 4 2 − − 4 e − = 2 SO 3 + O 2 {\displaystyle {\ce {2SO4^2- — 4e- = 2SO3 + O2}}}

Вывод: 2 Na 2 SO 4 ⟶ 4 Na + 2 SO 3 + O 2 {\displaystyle {\ce {2Na2SO4 -> 4Na + 2SO3 ^ + O2 ^}}}

NaOH ⟷ Na + + OH − {\displaystyle {\ce {NaOH <-> Na+ + OH-}}}

K(-): Na + + e − = Na 0 {\displaystyle {\ce {Na+ + e- = Na^0}}}

A(+): 4 OH − − 4 e − = 2 H 2 O + O 2 {\displaystyle {\ce {4OH- — 4e- = 2H2O + O2}}}

Вывод: 4 NaOH ⟶ 4 Na + 2 H 2 O + O 2 {\displaystyle {\ce {4NaOH -> 4Na + 2H2O + O2 ^}}}

Растворы

Активные металлы

Соль активного металла и бескислородной кислоты Соль активного металла и кислородсодержащей кислоты Гидроксид: активный металл и гидроксид-ион
NaCl ⟷ Na + + Cl − {\displaystyle {\ce {NaCl <-> Na+ + Cl-}}}

K(-): 2 H 2 O + 2 e − = H 2 + 2 OH − {\displaystyle {\ce {2H2O + 2e- = H2 + 2OH-}}}

A(+): Cl − − e − ⟶ Cl 0 ⟶ Cl 2 {\displaystyle {\ce {Cl- — e- -> Cl0 -> Cl2}}}

Вывод: 2 NaCl + 2 H 2 O ⟶ H 2 + Cl 2 + 2 NaOH {\displaystyle {\ce {2NaCl + 2H2O -> H2 ^ + Cl2 ^ + 2NaOH}}}

Na 2 SO 4 ⟷ 2 Na + + SO 4 2 − {\displaystyle {\ce {Na2SO4 <-> 2Na+ + SO4^2-}}}

K(-): 2 H 2 O + 2 e − = H 2 + 2 OH − {\displaystyle {\ce {2H2O + 2e- = H2 ^ + 2OH-}}}

A(+): 2 H 2 O − 4 e − = O 2 + 4 H + {\displaystyle {\ce {2H2O — 4e- = O2 ^ + 4H+}}}

Вывод: 2 H 2 O ⟶ 2 H 2 + O 2 {\displaystyle {\ce {2H2O -> 2H2 ^ + O2 ^}}}

NaOH ⟷ Na + + OH − {\displaystyle {\ce {NaOH <-> Na+ + OH-}}}

K(-): 2 H 2 O + 2 e − = H 2 + 2 OH − {\displaystyle {\ce {2H2O + 2e- = H2 ^ + 2OH-}}}

A(+): 4 OH − − 4 e − = O 2 + 2 H 2 O {\displaystyle {\ce {4OH- -4e- = O2 ^ + 2H2O}}}

Суммарно: 4 H 2 O + 4 e − + 4 OH − = 2 H 2 + 4 OH − + 4 e − + O 2 + 2 H 2 O {\displaystyle {\ce {4H2O + 4e- + 4OH- = 2H2 ^ + 4OH- + 4e- + O2 ^ + 2H2O}}}

Вывод: 2 H 2 O ⟶ 2 H 2 + O 2 {\displaystyle {\ce {2H2O -> 2H2 ^ + O2 ^}}}

Менее активные металлы и неактивные металлы

Соль менее активного металла и бескислородной кислоты Соль менее активного металла и кислородсодержащей кислоты Гидроксид
ZnCl 2 ⟷ Zn 2 + + 2 Cl − {\displaystyle {\ce {ZnCl2 <-> Zn^2+ + 2Cl-}}}

K(-): Zn 2 + + 2 e − = Zn 0 {\displaystyle {\ce {Zn^2+ + 2e- = Zn^0}}}

A(+): 2 Cl − − 2 e − = 2 Cl 0 {\displaystyle {\ce {2Cl- — 2e- = 2Cl^0}}}

Вывод: ZnCl 2 ⟶ Zn + Cl 2 {\displaystyle {\ce {ZnCl2 -> Zn + Cl2 ^}}}

ZnSO 4 ⟷ Zn 2 + + SO 4 2 − {\displaystyle {\ce {ZnSO4 <-> Zn^2+ + SO4^2-}}}

K(-): Zn 2 + + 2 e − = Zn 0 {\displaystyle {\ce {Zn^2+ + 2e- = Zn^0}}}

A(+): 2 H 2 O − 4 e − = O 2 + 4 H + {\displaystyle {\ce {2H2O — 4e- = O2 ^ + 4H+}}}

Вывод: 2 ZnSO 4 + 2 H 2 O ⟶ 2 Zn + 2 H 2 SO 4 + O 2 {\displaystyle {\ce {2ZnSO4 + 2H2O -> 2Zn + 2H2SO4 + O2}}}

Невозможно: гидроксиды неактивных металлов нерастворимы в воде

Электролиз в газах

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 11 мая 2011 года.

Электролиз в газах, при наличии ионизатора, объясняется тем, что при прохождении через них постоянного электрического тока наблюдается выделение веществ на электродах. Законы Фарадея в газах не действительны, но существуют несколько закономерностей:

  1. при отсутствии ионизатора электролиз проводиться не будет, даже при высоком напряжении;
  2. электролизу подвергаются только бескислородные кислоты в газообразном состоянии и некоторые газы;
  3. уравнения электролиза, как в электролитах, так и в газах, всегда остаются постоянными.

> См. также

  • Электрохимия
  • Ионная жидкость
  • Алюминий
  • Выпрямитель
  • Физические основы
  • Электрофлотация

> Примечания

  1. Обратное обозначение знака катода и анода встречается в литературе при описании гальванических элементов
  2. Электросинтез — Химическая энциклопедия

Ссылки

В Викисловаре есть статья «электролиз»

  • Процессы, протекающие при электролизе
  • Статья «Электролиз» (Химическая энциклопедия)
  • Электродиализ
  • Электрофлотация
  • Учебный фильм «Электролиз»

Статьи, относящиеся к электролизу
Начала электролиза

Электролитические процессы
Материалы,
полученные электролизом
См. также

Изобретение относится к медицине, а именно к области детоксикации организма, а также к области восстановления неравновесных радикалов в организме.

Известен способ насыщения крови водородом при внутреннем потреблении воды, насыщенной водородом, выделяющимся при коррозии металлического магния в воде, с целью восстановления неравновесных радикалов в организме, накапливающихся в организме при химиотерапевтическом лечении в онкологии . Однако этот метод трудноуправляем и трудно обеспечить заранее заданную концентрацию газа в крови (Япония).

Известен синтез водорода путем электролиза воды с использованием инертных электродов . Этот способ наиболее близок к предлагаемому изобретению. Способ осуществляется проведением электрохимического окисления воды в электрохимической ячейке на плоскопараллельных платиновых электродах. Однако этот способ трудно осуществить в кровеносном сосуде.

Известно устройство детоксикации организма по патенту РФ №2229300, опубл. 27.05.2004, по которому проводят электролиз крови на поверхности платинового электрода, включенного по биполярной схеме и введенного в кровеносный сосуд вдоль его оси. При этом постоянный ток пропускают через систему с помощью двух дополнительных электродов, наложенных на поверхность кожи пациента у концов платинового проволочного электрода. Однако с помощью указанного устройства проводится только синтез в крови гипохлорита натрия как дезинфектанта.

Задачей изобретения является расширение функциональных возможностей устройства за счет избирательного синтеза либо только водорода, либо только гипохлорита в токе крови.

Технический результат заключается в возможности раздельного получения в крови либо только водорода, либо только гипохлорита.

Указанная задача достигается тем, что в устройстве для электролиза крови, состоящем из электрода в виде проволоки для введения в полость кровеносного сосуда вдоль его оси и вспомогательных электродов, соединенных с источником постоянного электрического тока, согласно изобретению платиновая проволока одной частью вводится в кровеносный сосуд, а оставшейся частью вводится внутрь вспомогательного сосуда, при этом один из вспомогательных электродов расположен на кожном покрове, а второй погружен в этот сосуд с раствором электролита, причем сосуд имеет в донной части пористую мембрану, обеспечивающую электрический контакт между кожным покровом и раствором электролита в сосуде.

Конструкция устройства в схематичном виде изображена на фиг.1.

Устройство состоит из проволочного электрода 1, одна часть которого погружена в кровеносный сосуд 2, а вторая часть погружена в накладной сосуд 3 с раствором электролита 4. В донной части сосуда 3 смонтирована пористая диафрагма 5, проницаемая для раствора 4. В раствор 4 погружен дополнительный электрод 6, а второй дополнительный электрод 7 наложен на поверхность кожного покрова 8 вблизи конца проволочного электрода 1, погруженного в кровь. Электроды 6 и 7 через контакты 9 соединены источником постоянного тока (не показан), а сосуд 3 установлен на кожный покров 8 со стороны, противоположной месту наложения электрода 7, с возможностью электрического контакта раствора 4 с кожным покровом через пористую диафрагму 5.

Устройство работает следующим образом.

Проволочный электрод 1 вводится одной частью в кровеносный сосуд 2 вдоль его оси. Вторая часть проволочного электрода, оставшаяся снаружи, вводится через пористое дно 5 в накладной сосуд 3 и располагается параллельно его донной части. Внутри накладного сосуда 3 находится раствор электролита 4, в раствор 4 погружен дополнительный электрод 6. Второй дополнительный электрод 7 наложен на кожный покров 8. Дополнительные электроды 6 и 7 присоединены при помощи контактов 9 к источнику постоянного электрического тока. В этой цепи кожный покров 8 совместно с пористым дном 5 выступают в роли пористой диафрагмы, разделяющей электродные пространства, образованные двумя половинами проволочного электрода 1. Таким образом, пористое дно 5 обеспечивает электрический контакт между раствором 4, кожным покровом 8 и соответственно с внутренними тканями организма.

При протекании электрического тока между электродами 6 и 7 по тканям организма происходит поляризация лежащего на пути линий тока проволочного электрода 1 таким образом, что часть проволочного электрода 1, погруженного в кровь в кровеносном сосуде 2, поляризуется до потенциала, знак которого противоположен знаку электродного потенциала электрода 7. Вторая часть проволочного электрода 1, находящаяся над поверхностью кожного покрова 8 и погруженная в раствор электролита 4 внутри накладного сосуда 3, поляризуется до потенциала, знак которого противоположен знаку электродного потенциала электрода 6.

Таким образом, проволочный электрод 1 поляризуется по биполярной схеме так, что один его конец поляризован катодно, а в второй конец — анодно. При этом на поверхности одной части проволочного электрода 1 протекают процессы окисления, а на второй его части — процессы восстановления. В зависимости от полярности электрода 7 на конце проволочного электрода 1, погруженного в кровь в кровеносном сосуде 2, будет протекать либо процесс окисления иона хлора, входящего в состав плазмы крови, с образованием гипохлорит-иона. Либо будет протекать процесс восстановления молекулы воды с образованием элементарного водорода.

Соответственно противоположные электродные процессы будут протекать в накладном сосуде 3 на поверхности той части электрода 1, которая погружена в раствор 4. Следовательно, условия работы электрода 1 моделируют условия работы биполярного электрода, разделенного двойной диафрагмой 5 и 8, исключающей проникновение продуктов электролиза из одного электродного пространства в другое. Такая схема электролиза позволяет синтезировать в токе крови либо только гипохлорит-ион, когда необходима только детоксикация организма, либо только элементарный водород, когда необходимо восстановление в организме неравновесных радикалов.

Пример 1

Проводили сравнительные испытания терапевтического эффекта прямого электрохимического окисления крови в случае стафилококковой инфекции у двух кроликов. Кроликам подкожно, с наружной стороны левой ушной раковины, вводили 2 млрд. суточную взвесь культуры β-гемолитического плазмокоагулирующего S. aureus в дозе 0,3 мл с целью получения локального гнойного воспаления. На вторые сутки у кроликов развилось воспаление.

На 3 и 4 день после введения микробной суспензии один раз в сутки в краевую вену уха опытного кролика вводили платиновую проволоку диаметром 0,2 мм на глубину 15 мм. Выше и ниже краевых участков проволоки, погруженной в кровь, вдоль вены, на поверхность уха в указанные дни накладывали электроды и пропускали постоянный ток силой 2 миллиампера в течение 15 минут.

Другой кролик — контрольный и не подвергался вышеописанным манипуляциям. Наблюдение за животными проводили в течение 3 недель. Опытных кроликов в период наблюдения биопрепаратами не лечили.

У опытного и контрольного кроликов процесс воспаления шел по эксудативно-профилеративному типу с образованием у опытного кролика через 14 дней и у контрольного через 18 дней инкапсулированных очагов.

Таким образом, воздействие на ткани очага воспаления гипохлоритом, синтезированным в токе крови из хлоридов плазмы, под действием электрического тока способствовало более быстрому восстановлению тканей с прекращением воспалительного процесса в коже и подкожной клетчатке.

Пример 2

Испытывали терапевтическую эффективность синтезированного в кровяном русле гипохлорита при лечении катальной бронхопневмонии у телят. Были отобраны 4 теленка 3-месячного возраста с катаральной бронхопневмонией, из которых два были контрольными, а два — опытными.

Контрольным телятам внутримышечно вводили стрептомицина сульфат два раза в день в дозе 3 мг/кг.

Опытным телятам в яремную вену вводили платиновую проволоку длиной 100 мм и диаметром 0,2 мм. Выше и ниже краевых участков проволоки, погруженных в кровь, вдоль вены, на кожные участки накладывали два электрода, обернутых в марлю, смоченную физраствором. Через электроды пропускали постоянный электрический ток силой 2 миллиампера в течение 15 минут.

У опытных телят эта манипуляция проводилась трехкратно, с интервалом через сутки. У них после первого и второго воздействия отмечали переход кашля во влажный, смягчение векзикулярного дыхания, снижение температуры тела. Через 1-2 суток после третьего сеанса в группе опытных животных наблюдалось сглаживание симптомов болезни до полного выздоровления. Выздоровление телят контрольной группы отмечали в более поздние сроки. Телята из контрольной группы болели более тяжело, и симптомы болезни исчезали в сроки более продолжительные, чем у животных опытной группы.

Пример 3

Моделировали условия работы протяженного электрода в условиях кровеносного сосуда и накладного электрода. Измеряли распределение электродного потенциала по длине платинового проволочного электрода, размещенного на дне горизонтального канала из оргстекла сечением (4×4) мм и длиной 150 мм, заполненного физиологическим раствором. Проволочный электрод поляризовался по биполярной схеме с помощью двух дополнительных электродов, погруженных в раствор вблизи концов проволочного электрода.

Канал разделен на две равные части с помощью фрагмента свиной кожи, выполняющей роль пористой диафрагмы. Проволочный электрод пропущен сквозь диафрагму. Такое включение имитирует размещение проволочного электрода в двух средах: одна его половина имитирует размещение его в кровеносном сосуде, а вторая имитирует его размещение в выносном (накладном) сосуде, имеющем электрический контакт с тканями и кровеносным сосудом через донную часть сосуда и через кожный покров.

На кривой зависимости потенциал — длина электрода отмечены две ступени: одна при потенциале минус 450 мВ по водородной шкале и вторая при потенциале плюс 1300 мВ. При этом одна ступенька расположена по одну стороны от диафрагмы, а вторая — по ее другую сторону. Первой из них соответствует начало выделения водорода в нейтральной среде, а второй — начало выделения хлора.

Видно, что при разделении электродных пространств процессы выделения хлора и водорода разделены между собой пространственно диафрагмой и протекают в гидродинамически разделенных частях раствора, соединенных электрически.

Устройство для электролиза крови, состоящее из электрода в виде проволоки для введения в полость кровеносного сосуда вдоль его оси и вспомогательных электродов, соединенных с источником постоянного электрического тока, отличающееся тем, что платиновая проволока одной частью вводится в кровеносный сосуд, а оставшейся частью вводится внутрь вспомогательного сосуда, при этом один из вспомогательных электродов расположен на кожном покрове, а второй погружен в этот сосуд с раствором электролита, причем сосуд имеет в донной части пористую мембрану, обеспечивающую электрический контакт между кожным покровом и раствором электролита в сосуде.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *