Опубликовано

Электродвигатель 3000 оборотов

Содержание

Измерение частоты вращения двигателя. Приборы для измерения частоты вращения вала (угловой скорости)

Производитель: РоссияТахометр-частотомер реверсивный Веха-Т предназначен для измерения скорости и её направления, а также для измерения интервалов времени, времени наработки и числа совершённых оборотов. Прибор используется для измерения частоты вращения вала двигателя, скорости движения ленточного конвейера и т.п. Также может использоваться в качестве преобразователя частота-ток, частота-напряжение. Универсальный измерительный вход прибора позволяет напрямую подключать как механические датчики типа «сухой контакт», так и электронные датчики c выходом TTL или транзисторным выходом с открытым коллектором NPN и PNP структуры. При этом питание электронных датчиков осуществляется от встроенного в прибор источника стабилизированного напряжения →

Производитель: Kimo (Франция)Тахометры CT 100 O и CT 100 C— приборы, предназначенные для измерения скорости вращения с помощью оптического и контактного метода. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ Измеряемая величина Диапазон измерения Разрешение Погрешность Скорость вращения с помощью оптического метода (CT 100 O) 60…10000 об/мин 1 об/мин ± (0,3% + 1 об/мин) 10001…60000 об/мин 1 об/мин ±30 об/мин Скорость вращения с помощью контактного метода (CT 100 C) 30…20000 об/мин 1 об/мин ± (1% →

Производитель: PCE Комбинированный тахометр позволяет проводить комплексную оценку состоянии машин. Прибор имеет встроенный стробоскоп, функцию автоматического распознавания частоты вращения, функцию анализа состояния FFT, стетоскоп для детекции внутренних шумов и вибраций.

Производитель: PCE Лазерный оптический тахометр для работы на расстоянии до 8 м до объекта. Прибор обладает высокой точностью, импульсный выход. Прибор позволяет подключать дополнительные зонды и сенсоры. Точность: +/- 0,01% значения, разрешение: 0,001 … 1,0 оборота/минуту. Прорезиненная поверхность обеспечивает оптимальную эксплуатацию. 32 функции внутреннего лазерного тахометра, позволяют использовать его в качестве спидометра, тахометра, сумматора, счетчика и таймера. Дополнительный импульс TTL выходной.

Производитель: PCE Профессиональный прибор, точность измерения частоты вращения: ±0,05%. Прибор позволяет измерять вибрацию, ускорение, путь, а также частоту вращения. Тахометр оснащен блоком памяти на 1000 значений и интерфейсом RS-232. В качестве опции предлагается специальное программное обеспечение. Тахометр PCE-VT 204 представляет собой универсальный комбинированный прибор, сочетающий в себе множество функций. Прибор позволяет одновременно измерять три основных параметра вибрации, а также число оборотов исследуемого объекта. Для измерения числа оборотов применяются два базовых →

Производитель: PCE Лазерный оптический тахометр. для работы на расстоянии до 8 м до объекта. Прибор обладает высокой точностью, импульсный выход. Прибор позволяет подключать дополнительные зонды и сенсоры. Точность: +/- 0,01% значения, разрешение: 0,001 … 1,0 оборота/минуту. Технические параметры: Измерение с контактным датчиком 0,5 … 20000 об / мин (с зондами) 0,5 … 12000 об / мин (с колесом) Точность + / — 0,05% от показаний (RPM) Бесконтактное оптическое измерение Точность →

Производитель: PCE Оптический ручной тахометр со встроенным стробоскопом, рабочим диапазоном до 100 000 оборотов в минуту. Разрешение: до 0,1, точность измерения ± 0,1% от значения. Cтроб комбинированного тахометра является инструментом для ремонта, обслуживания и производства. Портативное устройство идеально для тестирования скорости вращения редукторы, центрифуги, электродвигателей, вентиляторов, насосов и другого оборудования, используемого в промышленности. Стробоскоп с диапазоном измерения 100.. 100000 оборотов в минуту, устройство имеет низкое энергопотребление и практически не требует →

Производитель: PCE Оптический тахометр с интерфейсом RS 232, кабелем передачи данных, программным обеспечением для анализа данных. Прибор позволяет проводить как бесконтактные так и контактные измерения с помощью специального адаптера. Оптические стороны — скорость метра с интерфейсом (RS232), программное обеспечение и подсчета голосов. С помощью прилагаемого программного обеспечения, данные могут быть переданы в другие программы обработки. Комплектпоставки: 1 x ручной тахометр PCE-151, 1 x отражающая полоса, 1 x приборная сумка, 1 →

Производитель: PCE Ручной тахометр для проведения бесконтактных измерений скорости вращения при максимальной скорости до 99 000 оборотов/мин, погрешность прибора: ± 0,05% от полученного значения.Многофункциональный тахометр позволяет Вам проводить контактные и бесконтактные измерения. Цифровой прибор PCE-T236 позволяет измерять скорость, число оборотов вращающихся деталей и частей машин и оборудования. Измерения в бесконтактном режиме выполняются с помощью отражающих маркеров, которые наклеиваются на вращающиеся части. В контактном режиме для измерения различных параметров используются сменные →

Производитель: PCE Недорогой профессиональный тахометр. Для бесконтактного (оптического) измерения частоты вращения с лазерным указателем. Пример применения прибора: Компактный ручной прибор для измерения числа оборотов бесконтактным методом. Цифровой оптический прибор PCE-DT62 наилучшим образом подходит для измерения числа оборотов машин и моторов, их отдельных узлов, промышленных комплексов (например, транспортеров и рольгангов, ДВС, приводов и передач). Измерение выполняется бесконтактным методом с помощью отражающих меток, которые наклеиваются на рабочие поверхности. Тахометр имеет переключатель режима →

Производитель: CEM InstrumentЦифровой тахометр АТ-8 (контактно-бесконтактный) предназначен для измерения скорости вращения, определения числа оборотов. Фототахометр использует центральный процессор, фотоэлектрический приемник и лазер. Особенности: Бесконтактные измерения Контактные измерения с помощью насадок ЖК-дисплей с подсветкой Запоминание максимального/минимального/последнего измерения Автоотключение после 10 секунд бездействия Технические характеристики: Параметр Значение ЖК-дисплей 5 разрядов Диапазон бесконтактного и контактного измерения 2…99999 об/мин Разрешение 0,1 об/мин (от 2 до 9999,99 об/мин) 1 об/мин (более 10000 об/мин) Точность ±0,05% →

Производитель: CEM InstrumentЦифровой тахометр АТ-6 предназначен для измерения скорости вращения, определения числа оборотов. Фототахометр использует центральный процессор, фотоэлектрический приемник и лазер. Особенности: Бесконтактные измерения ЖК-дисплей с подсветкой Запоминание максимального/минимального/последнего измерения Автоотключение после 10 секунд бездействия Технические характеристики: Параметр Значение ЖК-дисплей 5 разрядов Диапазон бесконтактного измерения 2…99999 об/мин Разрешение 0,1 об/мин (от 2 до 9999,99 об/мин) 1 об/мин (более 10000 об/мин) Точность ±0,05% Дальность бесконтактного измерения 50…500 мм Питание Батарея =9В →

В любом автомобиле присутствует электросистема, объединяющая десятки электронных элементов и многие метры проводов. От функционирования этой системы зависит работа всего автомобиля, поэтому любая неисправность в ней оборачивается серьезными проблемами. Провести диагностику электрической системы автомобиля, выявить неисправности и дефектные элементы можно с помощью специального тестера — мультиметра.

Устройство и принцип работы автомобильного тестера

В основе любого электрического измерительного прибора лежит амперметр — прибор для измерения силы тока. Однако с его помощью можно измерять и другие величины — главным образом, напряжение и сопротивление. Здесь все зависит от способа включения прибора в цепь: если включить амперметр последовательно, то можно измерить силу тока, если включить прибор параллельно какому-либо участку цепи — получится вольтметр, с помощью которого можно измерить напряжение на этом участке. А если прибор оснастить собственным источником тока и набором сопротивлений, то получится омметр — прибор для измерения сопротивлений (с его помощью также проводится и прозвонка цепей).

Собственно, так и устроен мультиметр: в нем один прибор подключается к цепи по-разному и становится, в зависимости от подключения, вольтметром, амперметром или омметром. Так устроены и классические стрелочные приборы, и современные цифровые. В последних роль амперметра играет специальная микросхема, которая и производит измерения, и выводит результаты на ЖК-дисплей в удобном для нас виде.

Однако современные мультиметры могут работать и в качестве термометра, электронного тахометра и других приборов. Как достигается такая универсальность? Всё просто — здесь также используется амперметр, но для измерения различных неэлектрических величин используются датчики, которые преобразуют эти величины в электрический ток, а мультиметр преобразует этот ток в понятные нам цифры — температуру, обороты двигателя, угол замкнутого состояния контактов в трамблёре и т.д.

Функции и комплектация автомобильного тестера

Современные цифровые мультиметры позволяют измерять большинство параметров электрической сети автомобиля:

  • Напряжение (в том числе на АКБ, генераторе, катушке зажигания и т.д.);
  • Сила тока;
  • Сопротивление;
  • Продолжительность электрических импульсов (для системы зажигания);
  • Угол замкнутого состояния контактов трамблёра (для карбюраторных двигателей);
  • Обороты двигателя;
  • Температура (с помощью термопары).

Также мультиметр можно использовать и в качестве простого тестера для различных видов проверок:

  • Проверка диодов;
  • Проверка предохранителей и других деталей;
  • Проверка целостности и качества электрических соединений;
  • Поиск обрывов проводки.

Все измерения можно проводить только при наличии определенных датчиков или щупов, которые идут в комплекте с прибором:

  • Обычные щупы для измерения напряжения, силы тока, сопротивления и прозвонки цепей;
  • Зажимы типа «крокодил» для тех же измерений;
  • Термопара для измерения температуры;
  • Зажимы для бесконтактных измерений (для высоковольтных цепей зажигания);
  • Адаптеры для проверки предохранителей, диодов и т.д.

В целом, мультиметр — это универсальный прибор, который заменяет собой множество других приборов, позволяет проводить несложную диагностику электрической системы автомобиля и выявлять неисправности без посещения автосервиса.

Другие статьи

28 Декабря

Для выполнения многих работ по металлу необходимо кратковременно зафиксировать заготовки. Это легко выполняется с помощью специального инструмента — ручного зажима с фиксатором. Все об этом инструменте, его типах, конструкции и характеристиках, а также о его выборе и использовании — читайте в статье.

21 Декабря

Контроль количества поступающего в цилиндры воздуха — одна из основ нормальной работы современного двигателя. Для измерения количества воздуха используются датчики абсолютного давления — все об этих устройствах, их типах, конструкции и работе, а также о верном выборе и замене читайте в данной статье.

14 Декабря

В каждом транспортном средстве предусмотрена система световой аварийной сигнализации, которая включается с помощью специального выключателя. О том, что такое выключатель аварийной сигнализации, каких типов он бывает и как устроен, а также о верном выборе и замене этого устройства — читайте в статье.

7 Декабря

На многих современных автомобилях и иных колесных машинах колеса устанавливаются на ступицу или тормозной барабан с помощью шпилек или закладных болтов и гаек. Все о колесных гайках, их типах, конструкциях и применимости, а также о правильном подборе и использовании крепежа рассказано в этой статье.

30 Ноября

При работе с арматурой, проволокой и другими изделиями в форме прутков возникает необходимость получения отрезков различной длины. Резка прутков выполняется специальным инструментом — болторезом или арматурными ножницами. Все об этом инструменте и его правильном выборе — читайте в данном материале.

23 Ноября

Для замены колес на грузовых автомобилях, тракторах и другой технике часто используется специальный инструмент — механический гайковерт или усилитель крутящего момента. Об этом инструменте, его устройстве, принципе работе и основных характеристиках, а также о выборе и работе с ним — читайте в статье.

16 Ноября

Надежное запирание дверей, окон, створок или крышек — гарантия сохранности имущества в доме, гараже, на даче и даже в почтовом ящике. Одно из наиболее распространенных средств запирания — навесной замок, о конструкции и типах которого, а также о правильном выборе и применении читайте в данной статье.

Приборы для измерения частоты вращения вала (угловой скорости) называются тахометрами. Тахометры , снабженные регистрирующим (записывающим) устройством, — называются тахографами. Приборы суммирующие число оборотов вала — называются счетчиками.

В зависимости от места установки тахометра и способа применения тахометры подразделяют на стационарные, дистанционные и ручные. По принципу действия, различают механические (центробежные), магнитные, магнитно-индукционные, электрические и электронные тахометры.

Механические тахометры

Принцип действия механических тахометров основан на использовании центробежных сил, пропорциональных квадрату угловой скорости, действующих на центробежные расходящиеся грузы (наклонное кольцо), находящиеся на валу и вращающиеся вместе с ним вокруг оси, (рис. 1, а). Чувствительным элементом является кольцо 1 на оси 2, проходящей через приводной валик 3. Кольцо нагружено спиральной пружиной 4 и связано тягой 5 с подвижной муфтой 6. При вращении валика кольцо стремится занять положение, перпендикулярное к оси вращения. Муфта через промежуточное кольцо 9 и зубчатую рейку 7 входит в зацепление с шестерней 10, на оси которой закреплена стрелка 8, движущаяся вдоль шкалы прибора (градуирована в об/мин.). Тахометр закреплен неподвижно, а вал 3 приводится во вращение через передачу от вала двигателя.

Рис. 1: а) устройство механического центробежного стационарного тахометра;

б) внешний вид механического центробежного ручного тахометра.

При установившемся режиме центробежная сила, действующая на вращающееся кольцо 1, уравновешивается силой действия спиральной пружины, и стрелка тахометра неподвижна. При изменении частоты вращения вала равновесие сил нарушается, вызывая разворот кольца относительно оси 2 на угол α и соответствующий разворот стрелки 8 прибора. Механические центробежные измерительные приборы обладают нелинейной статической характеристикой, поэтому их шкала неравномерная.

Периодический контроль частоты вращения и проверку стационарных тахометров производят механическим центробежным ручным тахометром (рис. 1, б), прижимая наконечник 1 к торцу вращающегося вала. В корпус 2 встроен редуктор с переключающим устройством, позволяющий менять передаточное отношение от наконечника 1 к чувствительному элементу для измерения в пяти диапазонах частоты вращения от 25 до 10000 об/мин. Переключают редуктор и устанавливают указатель 3 путем перемещения вдоль оси наконечника приводного вала при нажатой кнопке 4. В зависимости от установленного диапазона частоты вращения показания прибора определяют по одной из двух шкал.

К преимуществам механических тахометров относится высокая точность показаний, а к недостаткам — невозможность дистанционного отсчета.

Магнитоиндукционные тахометры

Магнитоиндукционный тахометр имеет равномерную шкалу. В тахометре (рис. 2.) вращение от приводного вала 1 через конические шестерни и вал 2 передается ротору с постоянными магнитами 3, между которыми на оси 10 находится алюминиевый диск 4.

Рис. 2. Магнитоиндукционный тахометр

Под действием вращающегося поля магнитов в диске индуцируется электрический ток, создающий свое магнитное поле. Сила взаимодействия магнитных полей уравновешивается силой действия волосковой пружины 5, один конец которой закреплен на оси 10, а другой — в корпусе прибора.

Пропорционально частоте вращения приводного вала 1 изменяются действующие силы, разворот диска 4, оси 10 и жестко связанной с ней стрелки 7 вдоль шкалы 8.

В прибор вмонтирован магнитоиндукционный успокоитель, состоящий из алюминиевого диска 9, закрепленного на валу 10, и неподвижной системы с постоянными магнитами 6. При движении в диске 9 индуцируется ток и создается магнитное поле, взаимодействующее с полем постоянных магнитов. А так как сила взаимодействия этих полей направлена в сторону, противоположную движению диска, то происходит торможение колебаний стрелки прибора.

Дистанционные магнитоиндукционные тахометры

Дистанционное измерение частоты вращения основано на принципе электрической дистанционной передачи вращения вала двигателя валу магнитно-индукционного измерительного узла измерителя и преобразования частоты вращения вала в угловые перемещения стрелки измерителя.

Рис. 3. Дистанционный магнитоиндукционный тахометр.

Тахометр работает следующим образом (рис. 3): в обмотке статора 11 датчика при вращении ротора 15 возбуждается трехфазовый ток с частотой, пропорциональной частоте вращения вала двигателя. Ток по трем проводам приводится к обмотке статора 12 синхронного серводвигателя.

Частота вращения магнитного поля статора измерителя пропорциональна частоте токов в обмотках фазы. Ротор двигателя измерителя вращается с частотой, синхронной вращению магнитного поля статора. На конце вала ротора двигателя укреплен магнитный узел 2 с шестью парами постоянных магнитов, между полюсами которых расположен чувствительный элемент 8. При вращении магнитного узла в чувствительном элементе индуцируются вихревые токи. В результате взаимодействия вихревых токов с магнитным полем магнитного узла создается вращающий момент чувствительного элемента. Вращающему моменту чувствительного элемента противодействует спиральная пружина 7, — один конец которой укреплен на оси чувствительного элемента, другой — неподвижен. Так как момент спиральной пружины пропорционален углу ее закручивания, то угол поворота чувствительного элемента пропорционален частоте вращения магнитного узла, и соответствует частоте вращения вала двигателя. На другом конце оси чувствительного элемента укреплена стрелка 5, показывающая по равномерной шкале 4 измерителя частоту вращения вала двигателя.

Для повышения устойчивости стрелки и улучшения отсчета показаний прибора применено демпфирование подвижной системы измерителя. При движении подвижной системы магнитный поток магнита 6 наводит в алюминиевом диске 3 вихревые токи, которые взаимодействуют с магнитным полем магнитов, и в подвижной системе возникает тормозящий момент. Ротор состоит из двух постоянных магнитов 13 и трех гистерезисных дисков 14, соединенных вместе. Взаимодействие ротора с магнитным полем статора — определяется взаимодействием магнитных полей постоянных магнитов статора и гистерезисных дисков.

Электрические тахометры

Электрические тахометры служат для дистанционного контроля направления и частоты вращения валов в диапазоне до 1500 об/мин. Датчиками в них служат тахогенераторы — миниатюрные генераторы переменного или постоянного тока, вырабатывающие напряжение, пропорциональное частоте вращения вала. Указателями являются магнитоэлектрические вольтметры со шкалой, градуированной в единицах частоты вращения.

Рис. 4: а) схема действия электрического тахометра; б) тахогенератор.

В тахометре (рис. 4, а) тахогенератор 3 постоянного тока, приводимый во вращение от вала через цепной привод 2, является датчиком частоты вращения вала 1. К нему может быть подключено до восьми указателей — вольтметров 4 постоянного тока, размещенных по судну. Передаточное отношение от вала 1 к датчику определяется соотношением числа зубьев звездочек цепного привода и должно быть таким, чтобы номинальные частоты вращения вала и якоря датчика совпадали. Если при номинальной частоте вращения вала напряжение, вырабатываемое датчиком, не равно (30±0,1) В, то необходимо корректировать положение магнитного шунта. При правом и левом вращении якоря с номинальной частотой разность напряжений не должна превышать 0,1 В. В противном случае, необходимо корректировать нейтральное положение траверсы щеткодержателей.

В электрическом генераторе переменного тока 5 (рис. 4, б), ротором является постоянный магнит 7, установленный неподвижно на валу, а статором — стальные неподвижные полосы 6. Тахогенераторы постоянного тока вместо обмоток возбуждения имеют постоянные магниты. В результате большого количества ламелей коллектора и особых форм вырезов канавок вырабатывается постоянное напряжение с небольшими пульсациями, которое пропорционально частоте вращения. Преимущество датчиков постоянного тока — получение поляризованного напряжения, т. е. одновременно определяется и направление вращения; недостаток — сбои в работе коллектора. Передача от вала должна быть без скольжения (шестеренчатая, цепная). В тахогенераторах переменного тока это возможно только при наличии двух обмоток со сдвигом фаз 90°. Переменное напряжение должно быть выпрямлено в мостиковой схеме. Разность напряжений обоих гальванически разделенных контуров измеряется прибором с двумя поворотными катушками. Напряжение на выводах тахогенератора зависит от количества подключенных показывающих приборов. Поэтому в корпусе тахогенератора устанавливается нагрузочный резистор, который можно включать или выключать. Имеется также резистор для поднастройки показаний.

Счетчики оборотов

Для суммирования числа оборотов вала двигателя или механизма применяют специальные счетчики оборотов. Упрощенная принципиальная схема дистанционного электромеханического счетчика представлена на рис. 5.

На валу 9 жестко закреплены храповое колесо 5 и цифровой барабан 7, а цифровые барабаны 6 свободно насажены на вал. Барабаны кинематически соединены между собой так, что при полном обороте каждого из них соседний слева разворачивается на 1/10 оборота. На каждый барабан нанесены цифры от 0 до 9. Таким образом обеспечивается десятичная система отсчета. Число читается в рамке прибора 8. Колесо 5 входит в зацепление с храповиком 3, который в одну сторону перемещается под действием пружины 4, а в другую — якорем 2 электромагнитной катушки 1. Катушка получает питание Uп от сети через герметичные контакты выключателя 13. В выключателе на пластинчатой пружине с контактом закреплен постоянный магнит 12. Выключатель крепится к корпусу двигателя таким образом, чтобы между якорем 12 и стальным штифтом 10 вала 11 был установлен зазор, обеспечивающий притягивание якоря и замыкание цепи питания катушки 1.

Рис. 5. Электромеханический счетчик оборотов

Широко распространены магнитоуправляемые контакты (герконы). Прибор представляет собой две тонкие пермалоевые пластины с небольшим зазором между концами, впаянные в стеклянную колбу, из которой выкачан воздух (в некоторых приборах колбу заполняют инертным газом). При появлении вблизи геркона магнитного поля постоянного или электрического магнита происходит взаимное притягивание (прогиб) пластин и замыкание контактов. Постоянный магнит крепится на вращающемся валу 11 вместо штифта 10.

При каждом обороте вала независимо от направления его вращения катушка 1, получив питание, втягивает якорь 2 и смещает храповик 3 на один зуб колеса 5. При обесточивании катушки храповик под действием пружины 4 смещается в первоначальное положение, разворачивает колесо 5, вал 9 и барабан 7 на 1/10 оборота, что приводит к изменению показаний счетчика на одну единицу. Через один оборот барабана 7 соседний барабан 6 разворачивается на 1/10 оборота, отсчитав 10 оборотов вала 11, и т. д.

Поделись статьей:

Как определить частоту вращения электродвигателя?

Очевидно, что правильная эксплуатация любой электрической машины предполагает соответствие такого важного ее технического параметра как частота вращения условиям эксплуатации.

Все основные параметры асинхронного электродвигателя изготовителем указываются на металлической бирке – шильдике, прикрепленной к его корпусу. И конечно, в приведенных технических данных обязательно присутствует информация о частоте вращения при номинальной нагрузке.

Однако, на практике, совсем нередки случаи, когда необходимо определить частоту вращения двигателя с отсутствующим шильдиком или с нечитаемыми – стершимися надписями на нем.

Конечно, в таких случаях опытный мастер-электроприводчик, наверняка сможет определить частоту вращения, но у начинающих специалистов-электриков, занимающихся обслуживанием электрического оборудования при решении этого вопроса могут возникнуть некоторые затруднения.

Проще всего определить скорость вращения вала работающего “асинхронника” тахометром. Но, учитывая, что ввиду узкой специфики использования, наличие этого измерительного прибора – большая редкость, данный метод здесь не рассматривается.

Надеемся, предложенный ниже способ окажется полезным. Он применим для асинхронных электродвигателей небольшой и средней мощности, имеющих однослойные статорные обмотки.

Итак, в нашем случае определение частоты вращения электродвигателя предполагает осмотр его статорной обмотки. Поэтому, с двигателя потребуется снять крышку (пошипниковый щит). Если на его валу закреплены шкив или полумуфта для передачи движения, то рекомендуем снять задний щит.

Сняв крышку и крыльчатку вентилятора с вала, следует, открутив винты, снять задний подшипниковый щит, после чего осмотреть торцевую часть статорной обмотки. Далее, надо посчитать количество пазов, занимаемых секциями одной катушки.

Общее количество пазов сердечника, разделенное на количество пазов, занимаемых секциями одной катушки (частное) составит число полюсов. Зная его значение, определяем частоту вращения асинхронного электродвигателя:

2 – 3000 об/мин; 4 – 1500 об/мин; 6 – 1000 об/мин.

Здесь стоит учесть одну особенность асинхронных двигателей – несоответствие скорости вращения магнитного поля и вращения ротора, поэтому скорость может составлять 940 обмин вместо 1000 или 2940 об/мин вместо 3000.

Как видно, особой сложностью этот способ определения частоты вращения по обмотке не отличается, однако, может быть упрощен; потребуется визуально определить какая часть окружности сердечника статора, занимается секциями одной катушки:

Занятая секциями одной катушки ½ часть сердечника статора двигателя свидетельствует о его частоте вращения 3000 обмин, ⅓ – 1500 об/мин, ¼ – 1000 об/мин.

>Как определить мощность и обороты электродвигателя без его разборки.

Как узнать характеристики электродвигателя без маркировки.

Электродвигатели в составе мотор-редукторов.

Электрические двигатели уже давно стали включаться в состав различных мотор-редукторов. Они находят свое применение как в трёхступенчатых типа МЦ3У. так и в двухступенчатых типа МЦ2У. Электромоторы имеют практически 90%-ный коэффициент полезного действия, не требуют постоянного обслуживания. Немаловажным параметром является и исключительная экологичность электрического мотора, вредные выхлопы отсутствуют вовсе, что делает его незаменимым при установке внутри помещения. Словом, в настоящее время электромоторы признаны в 3, а то и в 4 раза эффективнее традиционных двигателей внутреннего сгорания.

Но иногда, в случае выхода из строя электродвигателя, покупатель узнает, что абсолютно никакой сопроводительной документации к нему не прилагается. Маркировочные шильды, если и сохранились, могут находиться в изношенном потертом состоянии, так, что ничего на них рассмотреть попросту бывает невозможно. Как же в таком случае можно определить мощность двигателя и число его оборотов? Здесь поэтапно будут приведены советы, которые помогут это сделать.

Следует иметь в виду, что под числом оборотов подразумевается так называемая асинхронная скорость. Синхронная скорость это скорость вращения магнитного поля. Асинхронная скорость несколько ниже синхронной из-за наличия массы у вращательного элемента, а также воздействия сил трения, которые могут значительно понизить КПД мотора. Впрочем, на практике эти различия практически никогда не имеет решающего значения.

Сейчас на рынке представлено 3 основные категории асинхронных электродвигателей. Первая категория каталога – моторы, работающие при 1000 оборотах. На практике это число составляет порядка 950-970 оборотов, но для наглядности все-таки округляют до тысячи. Вторая категория моторы, выдающие 1500 об/мин. Это также округлено, так как в действительности диапазон лежит в пределах 1430-1470. Третья 3000 оборотов в минуту. Хотя реально такой мотор выдает 2900-2970 вращений.

Способы определения характеристик электромотора.

Чтобы определить, к какой из этих групп относится двигатель, не нужно разбирать его, как это советуют некоторые специалисты, чтобы обеспечить себе заказ на работу. Дело в том, что разбор электродвигателя может осуществить только мастер достаточной квалификации. На самом же деле достаточно открыть защитную крышку (другое название подшипниковый щит) и найти катушку обмотки. Таких катушек может быть несколько, но достаточно одной. В случае если к валу прикреплены полумуфта или шкив, потребуется снять еще и нижний щит.

Если катушки соединены при помощи деталей, которые мешают рассмотреть информацию, эти детали ни в коем случае нельзя отсоединять. Нужно попробовать определить на глаз соотношение размера катушки и статора.

Статором называется неподвижная часть электромотора, подвижная же имеет название ротор. В зависимости от конструктивных особенностей, в качестве ротора может выступать как сама катушка, так и магниты.

Если катушка закрывает собой половину кольца статора, такой двигатель относится к третьей группе, то есть способен выдавать до 3000 оборотов. Если размер катушки составляет треть от размеров кольца, это мотор второго типа, соответственно, он способен развить 1500 оборотов в минуту. Наконец, если катушка только на четверть закрывает собой кольцо, это первый тип. Электромотор развивает мощность в 1000 оборотов.

Существует еще один способ определения частоты вращения вала роторной части. Для этого также нужно снять крышку и найти верхнюю часть обмотки. По расположению секций обмотки и определяется скорость. Обычно внешняя секция занимает 12 пазов. Если сосчитать общее количество пазов и разделить на 12, можно получить число полюсов. Если число полюсов равно 2, двигатель имеет скорость вращения около 3000 об/мин. Если полюсов получилось 4, это соответствует 1500 оборотам в минуту. Если 6, то 1000 об/мин. Если 8, то 700 оборотов.

Третий способ определения количества оборотов внимательно осмотреть бирку на самом двигателе. Цифра на маркировке в конце и соответствует числу полюсов. Например, для маркировки АИР160S6 последняя цифра 6 указывает, сколько полюсов использует катушка.

Проще же всего измерить число оборотов специальным прибором тахометром. Но в силу узкой специализации применения данный способ нельзя рассматривать как общедоступный. Таким образом, даже если не сохранилось никакой технической документации, существует как минимум 4 способа определить число оборотов электрического мотора.

Как самостоятельно узнать число оборотов электродвигателя

Зачастую, покупая с рук электродвигатель, автовладелец (и не только) в последующем обнаруживает, что к нему нет никакой документации. В таком случае, как правило, приходится самостоятельно определять обороты электродвигателя, а многие, как свидетельствует практика, не знают, как это сделать. Данная статья расскажет, как определить обороты электродвигателя самостоятельно и, что следует при этом знать.

Пошаговая инструкция определения оборотов

1. На сегодняшний день асинхронные электродвигатели подразделяются на три группы, каждая из которых говорит об индивидуальном обращении ротора в минуту. Первая группа – электродвигатели, делающие 1000 оборотов в минуту. Стоит сразу заметить, что данная цифра немного преувеличена, так как двигатель асинхронный.

Он делает, как правило, около 950-970 оборотов, но для удобства специалисты такие цифры решили округлить. Ко второй группе относятся двигатели, количество обращений ротора которых составляет 1500 за минуту. Эта цифра так же округленная, на самом деле электродвигатель делает 1430—1470 оборотом в минуту.

Третья группа асинхронных электродвигателей – это группа, к которой относится деталь, ротор которой оборачивается вокруг себя три тысячи раз за одну минуту. Реальная цифра оборотов – 2900-2970.

2. Для того, чтобы определить обороты электродвигателя, вам сначала нужно выявить, к какой же именно из указанных выше групп он относится. Для этого откройте одну из его крышек и найдите под низом катушку обмотки. Помните, такая катушка может состоять, как из одной детали, так и из нескольких, в частности трех-четырех. Кроме всего прочего знайте, что подобных катушек в электродвигателе может быть несколько. Вам достаточно одной, до которой, чтобы рассмотреть, нужно меньше всего прикладывать усилий.

3. Внимание! Катушки между собой связаны определенными деталями, которые иногда мешают рассмотреть нужную информацию. Ни при каких обстоятельствах нельзя отсоединять ничего друг от друга. Внимательно приглядитесь к выбранной вами детали и попробуйте приблизительно определить размер катушки относительно кольца статора.

4. Данное расстояние, чтобы узнать обороты электродвигателя, вовсе не нужно определять до точности. Приблизительные расчеты подойдут вам.

Если размер катушки, примерно, закрывает собой половину кольца статора, то скорость вращения ротора – три тысячи оборотов в минуту.

Если размер катушки покрывает, приблизительно, треть самого кольца, электродвигатель будет относиться ко второй группе и, следовательно, число оборотов, которые он сможет совершать, не будет превышать отметки 1500 за минуту.

Когда размер катушки равен одной четвертой по отношению к кольцу – число оборотов электродвигателя будет 1000 оборотов за одну минуту и, соответственно, двигатель будет относиться к третьей группе.

Не забывайте, что указанные цифры – это всего лишь приблизительная картина вращения, в реальности они могут отличаться и это зависит от множества факторов.

Эти статьи вам тоже пригодятся:

Теперь посмотрите это полезное видео:

  • Японская техника изготовления цветов из лент – канзаши

Многие наверняка видели и уже имеют в своем гардеробе такие замечательные аксессуары из цветов канзаши. Эта статья научит вас технике их изготовления. Цветы из атласных лент – канзаси.

Узнать больше »

  • Модульное оригами — схема сборки двойного лебедя

    В данном уроке вы узнаете что такое модульное оригами и для изучения будет представлена схема сборки двойного лебедя, которого вы сможете собрать своими руками.

    Узнать больше «

  • Очень экономичная дровяная печь длительного горения

    Для владельцев садовых участков, теплиц, гаражей и любых помещений, нуждающихся в утеплении. Загрузив такую печь один раз дровами можно будет потом пару суток к ней вообще не подходить.

    Узнать больше «

  • Леденец детства или как сделать петушка на палочке

    Сейчас в продаже всё больше чупа-чупсы, твиксы и прочие заморские изделия. А почему бы Вам сегодня не сделать петушка на палочке и не порадовать своё дитя таким нестандартным подарком.

    Узнать больше «

  • Домашняя самодельная коптильня – 3 вида конструкций

    Как в походных, домашних и дачных условиях готовить продукт к копчению, подбирать коптильные дрова, мастерить самодельные коптильни, коптить продукт, и все это делать своими руками.

    Узнать больше «

  • Как выработать электричество для дачи своими руками

    Электричество для дачи своими руками? А почему бы и нет? Наверняка, такая созидательная мысль приходит в голову многим дачникам в те дни, когда без предупреждения вырубают свет в самый неподходящий момент.

    Узнать больше «

  • Удобрение из яичной скорлупы для подкормки растений

    Килограммы ценнейшего натурального удобрения, выбрасываемого на помойку, можно применить в качестве замечательного удобрения и дополненным набором важных для растений микроэлементов.

  • Управление скоростью вращения однофазных двигателей

    Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

    Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки — рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

    Регулировать скорость вращения таких двигателей необходимо, например, для:

    • изменения расхода воздуха в системе вентиляции
    • регулирования производительности насосов
    • изменения скорости движущихся деталей, например в станках, конвеерах

    В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

    Способы регулирования

    Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

    Рассмотрим способы с изменением электрических параметров:

    • изменение напряжения питания двигателя
    • изменение частоты питающего напряжения

    Регулирование напряжением

    Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя — разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

    S=(n1-n2)/n2

    n1 — скорость вращения магнитного поля

    n2 — скорость вращения ротора

    При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя.

    Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз — то есть, снижением питающего напряжения.

    При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

    Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

    На практике для этого применяют различные схемы регуляторов.

    Автотрансформаторное регулирование напряжения

    Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

    На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

    Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

    Преимущества данной схемы:

        • неискажённая форма выходного напряжения (чистая синусоида)
        • хорошая перегрузочная способность трансформатора

    Недостатки:

        • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
        • все недостатки присущие регулировке напряжением

    Тиристорный регулятор оборотов двигателя

    В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

    Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

    Таким образом изменяется среднеквадратичное значение напряжения.

    Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

    Ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.

    Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

    • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
    • добавляют на выходе конденсатор для корректировки формы волны напряжения
    • ограничивают минимальную мощность регулирования напряжения — для гарантированного старта двигателя
    • используют тиристоры с током в несколько раз превышающим ток электромотора

    Достоинства тиристорных регуляторов:

        • низкая стоимость
        • малая масса и размеры

    Недостатки:

        • можно использовать для двигателей небольшой мощности
        • при работе возможен шум, треск, рывки двигателя
        • при использовании симисторов на двигатель попадает постоянное напряжение
        • все недостатки регулирования напряжением

    Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

    Транзисторный регулятор напряжения

    Как называет его сам производитель — электронный автотрансформатор или ШИМ-регулятор.

    Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы — полевые или биполярные с изолированным затвором (IGBT).

    Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

    Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

    Выходной каскад такой же как и у частотного преобразователя, только для одной фазы — диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

    Плюсы электронного автотрансформатора:

          • Небольшие габариты и масса прибора
          • Невысокая стоимость
          • Чистая, неискажённая форма выходного тока
          • Отсутствует гул на низких оборотах
          • Управление сигналом 0-10 Вольт

    Слабые стороны:

          • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
          • Все недостатки регулировки напряжением

    Частотное регулирование

    Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.

    Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

    На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

    Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

    Однофазные двигатели могут управляться:

    • специализированными однофазными ПЧ
    • трёхфазными ПЧ с исключением конденсатора

    Преобразователи для однофазных двигателей

    В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.

    Это модель Optidrive E2

    Для стабильного запуска и работы двигателя используются специальные алгоритмы.

    При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

    Xc=1/2πfC

    f — частота тока

    С — ёмкость конденсатора

    В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

    Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.

    Преимущества специализированного частотного преобразователя:

          • интеллектуальное управление двигателем
          • стабильно устойчивая работа двигателя
          • огромные возможности современных ПЧ:
            • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
            • многочисленные защиты (двигателя и самого прибора)
            • входы для датчиков (цифровые и аналоговые)
            • различные выходы
            • коммуникационный интерфейс (для управления, мониторинга)
            • предустановленные скорости
            • ПИД-регулятор

    Минусы использования однофазного ПЧ:

          • ограниченное управление частотой
          • высокая стоимость

    Использование ЧП для трёхфазных двигателей

    Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

    Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

    Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого — магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

    В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

    При работе без конденсатора это приведёт к:

    • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
    • разному току в обмотках

    Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

    Преимущества:

            • более низкая стоимость по сравнению со специализированными ПЧ
            • огромный выбор по мощности и производителям
            • более широкий диапазон регулирования частоты
            • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

    Недостатки метода:

            • необходимость предварительного подбора ПЧ и двигателя для совместной работы
            • пульсирующий и пониженный момент
            • повышенный нагрев
            • отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями
    Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *