Опубликовано

Электризация в быту

Что такое статическое электричество, как оно образуется

Как я уже сказал, статическое электричество может воздействовать на нас в различных местах, в любой момент, даже тогда, когда вы просто пытаетесь открыть дверь, касаясь дверной ручки.

Чтобы понять причину появления статического электричества для начала нужно вспомнить о природе материи.

Как вы знаете вся материя состоит из атомов, которые, в свою очередь, состоят из трех разных видов более мелких частиц:

— отрицательно заряженных электронов

— положительно заряженных протонов

— не имеющих зарядов нейтронов

В большинстве тел, чаще всего, электроны и протоны полностью компенсируют друг друга, их количество в атомах равное, соответственно, эти предметы электронейтральны.

Но так как электроны очень маленькие частицы и их масса незначительна, то даже обычное трение даёт слабо связанным электронам достаточно энергии, чтобы они покинули свои атомы и перешли в атомы на другой поверхности.

Когда это происходит у одного объекта протонов остаётся больше, чем электронов, и он становится положительно заряженным, а объект у которого больше электронов, наоборот, накапливает отрицательный заряд. Такая ситуация называется дисбалансом зарядов или еще разделением зарядов.

Но как вы знаете, природа постоянно стремится к восстановлению равновесия поэтому, когда одно из заряженных тел вступает в контакт с другим, свободные электроны немедленно используют эту возможность попасть туда где они нужнее, где их не хватает – покинув отрицательно заряженный объект, чтобы восстановить баланс.

Вот это перескакивание электронов от отрицательно заряженного тела и есть знакомое всем явление — статическое электричество, называемое еще статическим разрядом.

К счастью это происходит далеко не с каждым объектом, иначе нас бы било током постоянно.

Чаще всего слабо связанными электронами обладают материалы – электрические проводники, самым ярким представителем которых являются металлы. А вот у диэлектриков, изоляторов, материалов, плохо проводящих электрический ток, электроны прочносвязанные, они свободно не переходят к атомам других материалов.

С большей вероятностью накапливание электрического разряда происходит именно при взаимодействии проводника с диэлектриком, при трении одного материала о другой.

Так, например, когда вы просто идёте по ковру, электроны вашего тела, из-за трения ног об ковер, перемещаются на него, так как человеческое тело проводник электрического тока. В то же время материал ковра – шерсть, сопротивляется отделению своих прочносвязанных электронов, являясь диэлектриком.

И хотя в момент, когда вы находитесь на ковре, ваше тело и ковер вместе остаются электрически нейтральными у них уже есть разделение разрядов.

И теперь, когда вы просто дотрагиваетесь до металлической дверной ручки – немедленно ощущаете статический разряд. Всё дело в том, что свободные электроны с металлической ручки перескакивают на вашу руку замещая потерянные вашим телом электроны, которые перескочили на ковер.

Теперь, я думаю, вам понятно, что такое статическое электричество и почему оно образуется. Кстати, его самым ярким проявлением в природе являются молнии.

При определенных условиях в облаках происходит разделение зарядов, после чего этот дисбаланс нейтрализуется, электроны высвобождаются и поглощаются другими телами – домами, землей или даже другим облаком, с образованием гигантской вспышки – молнии.

увеличение электропроводимости диэлектрических материалов

Еще одним из распространенных способов защиты от статического электричества является увеличение электропроводимости диэлектрических материалов, за счет чего они получают возможность отводить свободные электроны.

Достигается это путем нанесения на диэлектрические предметы токопроводящих покрытий или материалов, например, поверхностной плёнки из токопроводящего материала, тонкой фольги и т.д.

В частности, в быту, можно пользоваться специальными средствами, так называемыми, антистатиками, думаю многие женщины понимают, о чем идёт речь.

Такой спрей-антистатик обычно состоит из токопроводящего полимера, растворённого в смеси деионизированной воды и спирта. После обработки поверхности раствор испаряется, а полимер остается в виде тончайшей токопроводящей плёнки, которая не даёт заряду накапливаться на поверхности предмета.

Подобный эффект также достигается увеличения влажности воздуха до 60-70%, при котором на поверхности диэлектриков появляется тонкая пленка влаги, за счет которой, обеспечивается достаточная поверхностная электропроводность материалов.

ИОНИЗАЦИЯ ВОЗДУХА

Эффективным и доступным средством защиты от статического электричества также является ионизация воздуха.

Для этого используется специальный прибор – ионизатор, который генерирует поток положительно и отрицательно заряженных ионов, распространяемых вентилятором. Они, притягиваются к молекулам противоположной полярности окружающих предметов и нейтрализуют статический заряд на них.

Если же не получается бороться со статическим электричеством вышеперечисленными способами, можно действовать более кардинально. Например, начать пользоваться повседневными предметами их других материалов слабоэлектризующимися или неэлектризующимися вовсе. Заменить чехлы в автомобиле, купить другие тапочки для дома и т.д.

Нарушение баланса между электрическими зарядами внутри материала или на его поверхности это возникновение статического электричества. Заряд сохраняется, пока он не будет снят вследствие протекания электрического тока или разряда. Статическое электричество вызывается при контакте и разделении двух поверхностей, и хотя бы одна из поверхностей является диэлектриком – непроводящим электрический ток материалом. Со статическим электричеством большинство из людей знакомы, поскольку они видели искры в момент нейтрализации избыточного заряда, ощущали на себе разряд и слышали сопровождающий его треск.

Причины статического электричества

Вещества состоят из атомов, которые в обычном состоянии электрически нейтральны, поскольку содержат равное количество положительных зарядов (протонов ядра) и отрицательных зарядов (электронов атомных оболочек). Статическое электричество заключается в разделении положительных и отрицательных зарядов. При контакте двух материалов электроны могут переходить с одного материала на другой, что приводит к избытку положительных зарядов на одном материале, и равном избытке отрицательного заряда на другом материале. При разделении материалов образовавшийся дисбаланс зарядов сохраняется.

В контакте материалы могут обмениваться электронами; материалы, слабо удерживающие электроны, склонны их терять, в то время как материалы, в которых внешние оболочки атомов не полностью заполнены, склонны захватывать электроны. Этот эффект называется трибоэлектрическим, и приводит к тому, что один материал заряжается положительно, а другой отрицательно. Полярность и величина заряда при разделении материалов зависит от относительного положения материала в трибоэлектрическом ряду.

Материалы располагаются в ряду, один конец которого является положительным, а другой отрицательным. При трении пары материалов материал, располагающийся ближе к положительному концу ряда, заряжается положительно, а другой – отрицательно. Единого трибоэлектрического ряда (подобного ряду напряжений металлов), не существует, как нет и единой теории электризации. Обычно ближе к положительному концу ряда располагаются материалы с большей диэлектрической проницаемостью.

Порядок следования материалов в трибоэлектрическом ряду может быть нарушен. Так в паре шелк-стело, стекло отрицательно, в паре стекло-цинк, отрицателен цинк, а в паре цинк-шелк, отрицательно заряжается не цинк, как следовало бы ожидать, а шелк. Такое отсутствие упорядоченности называется трибоэлектрическим кольцом.

Трибоэлектрический эффект – основная причина возникновения статического электричества в повседневной жизни, при взаимном трении различных материалов. Например, если потереть воздушный шарик о волосы, он заряжается отрицательно, и может притягиваться к положительно заряженным источникам стены, прилипая к ней и нарушая законы тяготения.

Предупреждение и удаление статических зарядов

Предотвратить накопление статики очень просто – достаточно открыть окно или включить увлажнитель воздуха. Увеличение содержания влаги в воздухе приведет к увеличению ее электрической проводимости, аналогичного эффекта можно добиться ионизацией воздуха.

Особо чувствительны к статическим разрядам предметы можно защитить нанесением антистатического средства, с образованием на поверхности предмета токопроводящего слоя.

Особенно чувствительны к разрядам статического электричества полупроводниковые компоненты электронных устройств. Для защиты этих устройств обычно используются токопроводящие антистатические пакеты. Работающие с полупроводниковыми схемами люди зачастую заземляют себя антистатическими браслетами, надеваемыми на кисть руки. Избежать образования статических зарядов при контакте с полом (например, в больницах), можно путем ношения антистатической обуви с токопроводящей подошвой.

Разряд

Искра – это разряд статического электричества, когда избыточный заряд нейтрализуется потоком зарядов из окружения или к окружению. Электрический удар вызывается раздражением нервов при протекании нейтрализующего тока через человеческое тело. Запасенная энергия статики зависит от размера объекта, электрической емкости, напряжения, до которого он оказался заряженным, и диэлектрической проницаемости окружающей среды.

Для моделирования эффекта разряда статики на чувствительные электронные приборы, человеческое тело представляется как электрическая емкость в 100 пФ, заряженная до напряжения от 4 до 35 кВ. При касании объекта эта энергия разряжается менее чем за микросекунду. Хотя общая энергия разряда мала, порядка миллиджоулей, она может повредить чувствительные электронные приборы. Большие объекты запасают больше энергии, что представляет опасность для людей при контакте, или воспламенить искрой горючий газ или пыль.

Молния

Молния – пример статического разряда атмосферного электричества в результате контакта частиц льда в грозовых облаках. Обычно значительные разряды могут накапливаться только в областях в малой электрической проводимостью. Разряд обычно наступает при напряжении поля порядка 10 кВ/см, в зависимости от влажности. Разряд перегревает окружающий воздух с образованием яркой вспышки и звука треска. Молнии – всего лишь масштабный вариант искры статического разряда электричества. Вспышка возникает вследствие нагрева воздуха в канале разряда до такой высокой температуры, что он начинает излучать свет, как и любое раскаленное тело. Удар грома – последствия взрывного расширения воздуха.

Электронные компоненты

Многие полупроводниковые приборы электронных устройств очень чувствительны к присутствию статики и могут быть повреждены разрядом. При обращении с наноустройствами обязательно ношение антистатического браслета. Другой мерой предосторожности является снятие обуви с толстой резиновой подошвой и постоянное стояние на металлическом заземленном основании.

Образование статического электричества в потоках возгораемых и горючих материалов

Разряд статического электричества представляет опасность в отраслях промышленности, где применяются горючие вещества, где маленькие электрические искры могут привести к взрыву. Движение мельчайших частиц пыли или жидкостей с малой электропроводностью в трубопроводах или их механическое перемешивание может вызвать образование статики. При статическом разряде в облаке пыли или паров возможен взрыв.

Взрываться могут зерновые элеваторы, лакокрасочные фабрики, участки производства стекловолокна, топливозаправочные колонки. Накапливание заряда в среде происходит при ее электрической проводимости менее 50 пС/м, при большей проводимости образующиеся заряды рекомбинируют (рекомбинация – процесс, обратный ионизации), и накапливания не происходит.

Наполнение больших трансформаторов трансформаторным маслом требует соблюдения предосторожностей, поскольку электростатические разряды внутри жидкости могут повредить изоляцию трансформатора.

Поскольку интенсивность образования зарядов тем выше, чем выше скорость течения жидкости и диаметр трубопровода, в трубопроводах диаметром более 200 мм скорость течения жидкости ограничивается стандартом. Так, скорость течения углеводородов с содержанием воды обычно ограничивается на уровне 1 м/с.

Образование зарядов ограничивается заземлением. При проводимости жидкости ниже 10 пС/м этой меры оказывается недостаточно, и к жидкости добавляются антистатические присадки.

Перекачивание топлива

Перекачивание горючих жидкостей наподобие бензина по трубопроводам может привести к образованию статического электричества, а разряд может привести к возгоранию паров топлива.

Подобные случаи происходили на автозаправках и в аэропортах при заправке самолетов керосином. Здесь также эффективно заземление и антистатические присадки. Течение газа в трубопроводах представляет опасность лишь при наличии в газе твердых частичек или капелек жидкости.

На космических аппаратах статическое электричество представляет большую опасность вследствие низкой влажности среды, и с этой опасностью придется считаться при осуществлении запланированных полетов на Луну и Марс. Пешие переходы по сухой поверхности могут вызвать образование огромных зарядов, могущих повредить электронные устройства.

Озонное растрескивание

Статические разряды в присутствии воздуха или кислорода вызывают образование озона. Озон повреждает резиновые детали, в частности, ведет к растрескиванию уплотнителей.

Энергия статического разряда

Высвободившаяся при статических разрядах энергия варьируется в широких пределах. Разряды энергией более 5000 мДж представляют опасность для человека. Один из стандартов предполагает, что предметы потребления не должны создавать разряд с энергией выше 350 мДж на человека. Максимальное напряжение ограничивается значением 35-40 кВ вследствие ограничивающего фактора – коронного разряда. Потенциал ниже 3000В обычно человеком не ощущается. Прохождение пешком 6 метров по полихлорвиниловому линолеуму при влажности воздуха 15% вызывает образование потенциала 12 кВ, в то время как при 80% влажности потенциал не превышает 1,5 кВ.

Искра возникает при энергии искры выше 0,2 мДж, но искру подобной энергии человек обычно не видит и не слышит. Чтобы произошел взрыв в водороде, достаточно искры с энергией 0,017 мДж, и до 2 мДж для паров углеводородов. Электронные компоненты повреждаются при энергии искры между 2 и 1000 нДж.

Применение статики

Статическое электричество широко используется в ксерографах, воздушных фильтрах, для окраски автомобилей, фотокопировальных устройствах, краскораспылителях, принтерах, и заправке топливом воздушных судов.

Урок по теме: «Учет и применение в технике явлений электризации»

  • Соколовская Наталья Юрьевна, учитель физики

Разделы: Физика

Цели урока:

  1. Систематизировать и обобщить знания учащихся об электризации тел.
  2. Формировать убеждения материальности и познаваемости окружающего мира.
  3. Формировать умения делать логические выводы, уметь применять полученные знания для объяснения явлений, происходящих в природе и технике.
  4. Прививать интерес к физике.

План урока:

  1. Организационный этап.
  2. Актуализация знаний.
  3. Сообщения о проявлениях явления электризации в природе и технике с демонстрацией опытов.
  4. Решение качественных задач.
  5. Подведение итогов.

Технический прогресс не только расширяет возможности человека, его власть над природой. Но одновременно ставит множество проблем. Так, например, сегодня в различных отраслях промышленности используются сильные электрические поля, широко внедряется в быт синтетика, а синтетические материалы обладают способностью накапливать электрические заряды. И приходится решать проблемы, связанные с влиянием электрических полей на технологические процессы, на организм человека.

Применение в технике явлений электризации и взаимодействия наэлектризованных тел.

Изготовление наждачной бумаги.

Принцип покрытия наждачным порошком бумаги и получения искусственных ворсистых материалов можно пояснить на следующем опыте. Диски от раздвижного конденсатора соединяют с кондукторами электрофорной машины. На нижний диск насыпают песок или узкие полоски цветной бумаги. Поверхность верхнего диска смазывают клеем. Приведя в действие электрофорную машину, заряжают диски. При этом кусочки бумаги или песок, находящиеся на нижнем диске, получив одноимённый с ним заряд, под действием сил электрического поля притягиваются к верхнему диску и оседают на нём.

После сообщения учащегося учитель демонстрирует электростатический способ изготовления наждачной бумаги.

Метод электростатической покраски металлических изделий.

Представление об электростатическом методе покраски учащиеся могут составить на следующем опыте. Для опыта используют пульверизатор. Если нагнетать с помощью груши воздух, находящаяся в пульверизаторе подкрашенная жидкость поднимается вверх по трубе, распыляясь в воздухе, попадает на экран а. Если сбоку от струи расположить экран и подавать на него положительный заряд капельки красителя притягиваются к этому экрану, окрашивая его.

Если теперь на металлическую трубку пульверизатора подать отрицательный заряд, соединив её с другим кондуктором электрофорной машины, можно заметить, что капельки красителя становятся более мелкими и ложатся на экран, имитирующий окрашиваемую деталь, ровным слоем. Экран-деталь изготавливают из проводящего материала. Чтобы улучшить видимость опыта, сверху на экран наклеивают лист белой бумаги.

Метод окраски поверхностей в электрическом поле – электроокраска – впервые разработал видный русский ученый А.Л. Чижевский. Суть его такова. Жидкий краситель любого цвета помещают в пульверизатор – сосуд с тонко оттянутым концом (соплом) и подводят к нему отрицательный потенциал. К металлическому трафарету подводят положительный потенциал, а перед трафаретом размещается окрашиваемая поверхность (ткань, бумага, металл и т.д.). Благодаря электростатическому полю между соплом с краской и трафаретом частицы краски летят строго по направлению к металлическому трафарету, и на окрашиваемой поверхности воспроизводится точный рисунок трафарета, при этом ни одна капля краски не падает. Регулируя расстояние между соплом и объектом окраски, можно менять скорость нанесения и толщину покровного слоя, т.е. регулировать скорость окраски.

Данный метод даёт экономию красителей до 70% по сравнению с обычным методом окраски и ускоряет примерно в три раза процесс покрытия изделия, т.к. один человек за пультом электропульверизатора заменяет несколько рабочих с кистями, кроме того, можно почти одновременно покрывать все изделие независимо от габаритов. Если при работе кистью краска не всегда ложится ровно, то при электроокраске пробелы и неровности отсутствуют, повышается глянцевитость, снижается брак. Немаловажно и то, что этот метод позволяет улучшить и условия труда: управление процессом электроокраски может производиться с пульта, полностью изолированного от места окраски.

В нашей стране метод распыления красок и покрытия ими поверхностей, изобретённый А.Л. Чижевским, стали осваивать в начале 50-х годов XX в. В настоящее время этот метод стал основным на крупных предприятиях, имеющих дело с покраской изделий, будь то вагоны метро, самолёты, океанские лайнеры, военное оборудование, заводские станки, автомобили, сельскохозяйственные машины, мебель или игрушки.

Кроме того, метод, подобный методу окраски в электростатическом поле, можно использовать и в пищевой промышленности, например, для копчения рыбы. В результате экономится коптильное вещество, а эффективность процесса копчения резко повышается.

На этом принципе основано изготовление с помощью электрического поля ковров, искусственного меха, замши, декоративных материалов для обивки мебели.

Движение заряженных частиц краски в электрическом поле используют в типографском производстве.

После сообщения учащегося учитель демонстрирует способ электростатической покраски.

Очистка воздуха от пыли и лёгких частиц.

Так как частицы пыли способны электризоваться, то для их удаления часто применяют фильтр, внутри которых находится электрозаряженный элемент, притягивающий к себе микрочастицы. Для того чтобы сделать пылеудаление более эффективным, воздух в помещении ионизируют. Такие электрофильтры устанавливают в цехах размола цемента и фосфоритов, на химических заводах.

Отрицательное влияние электризации трением на производстве и в быту.

На одном из целлюлозно-бумажных комбинатов некоторое время не могли установить причину частых обрывов быстро движущейся бумажной ленты. Были приглашены учёные. Они выяснили, что причина заключалась в электризации ленты при трении её о валки.

При трении о воздух электризуется самолёт. Поэтому после посадки к самолёту нельзя сразу приставлять металлический трап: может возникнуть разряд, который вызовет пожар. Сначала самолёт “разряжают”: опускают на землю металлический трос, соединённый с обшивкой самолёта, и разряд происходит между землёй и концом троса. Бывали случаи, что быстро поднимающийся в воздухе воздушный шар загорался. Воздушные шары часто наполняют водородом, который легко воспламеняется. Причиной воспламенения может быть электризация трением прорезиненной оболочки о воздух при быстром подъёме.

В любом процессе, где участвуют движущиеся части вещества или движется зерно или жидкость, происходит разделение зарядов. Одна из опасностей при транспортировке зерна в элеватор связана с тем, что в результате разделения зарядов в атмосфере, заполненной горячей пылью, может проскочить искра и произойти возгорание.

Разряды электричества возникают и тогда, когда человек ходит по полимерным покрытиям полов современной квартиры, синтетическим коврам или снимает с себя нейлоновую одежду.

Если способы и средства для борьбы с накоплением электрических зарядов? Безусловно, есть.

На производстве – это тщательное заземление станков, машин применение токопроводящих пластиков для полов, увлажнение воздуха, использование различного рода “нейтрализаторов”, ионизаторы воздуха.

В домашних условиях устранить заряды статического электричества довольно легко, повышая относительную влажность воздуха квартиры до 60-70 %. Электризация устраняется, если к воде, которой протирают пластиковые полы, добавить гидрофильные вещества, например хлорид кальция, а также протирать электризующие поверхности глицерином. Химическая промышленность выпускает препарат “Антистатик”, который снимает электрический заряд с синтетической одежды.

Качественные вопросы:

Вопрос.

Струя бензина, вытекающая из бензохранилища, электризуется, что может стать причиной взрыва паров бензина. Каким образом бензиновые, керосиновые, нефтяные баки оберегают от возможного пожара?

Ответ.

Путём заземления корпуса нефтяного бака.

Вопрос.

Согласно правилам пожарной безопасности, полиэтиленовые канистры категорически запрещается применять для хранения бензина и заправки автомобиля, так как, если бензин наливать или выливать из пластиковых канистр, может произойти самопроизвольное воспламенение жидкости. Почему это происходит?

Ответ.

Дело в том, что при трении бензина о внутреннюю поверхность полиэтиленовой канистры на стенках ёмкости скапливается статическое электричество. Поскольку полиэтилен не проводит электричества, величина заряда может быть значительной. Если поднести такую канистру к заливной горловине бензобака, то между ними произойдёт электрический разряд в виде искры, способной воспламенить пары бензина. К сожалению, не все любители знают об это, а результат неведения может быть самым печальным. Бензин можно хранить только в металлических канистрах.

Вопрос.

Почему нити прилипают к гребням чесальных машин, применяемых в текстильной промышленности, и при этом путаются и часто рвутся. Для борьбы с этим явлением в цехах искусственно создают повышенную влажность воздуха. Зачем это делают?

Ответ.

Нити на гребнях чесальных машин электризуются и прилипают к гребням. Повышенная влажность препятствует электризации.

Вопрос.

Электростатические явления гораздо лучше получаются зимой, чем летом. Почему так происходит? Ведь очевидно, что заряды одинаково хорошо разделяются в любое время года.

Ответ

Обычно влажность воздуха ниже зимой, чем летом, особенно внутри отапливаемых строений. При повышенной влажности сырой не только воздух, но становится влажной и поверхность тел. Водяная плёнка на поверхности тел обеспечивает частично проводящий путь, поэтому заряды могут стекать с тел, возвращая всё вокруг в электронейтральное состояние.

Вопрос.

Почему огнеопасные объекты, например пороховые склады, иногда покрывают металлической заземлённой сеткой?

Вопрос.

Для чего к корпусу автоцистерн, предназначенных для перевозки бензин, прикреплена массивная цепь, несколько звеньев, которой волочатся по земле?

Вопрос.

Почему при быстром перематывании плёнки на магнитофоне она приобретает способность “прилипать” к различным предметам?

Литература.

  1. Методика преподавания физики.- М.:”Просвещение”, 1965.
  2. Кл.Э. Суорц Необыкновенная физика обыкновенных явлений. – М.:”Наука”, 1987.
  3. Карпович А.Б. Сборник задач-вопросов по физике – М.: Издательство Академии Педагогических Наук , 1956.
  4. Книга для чтения по физике -М.:”Просвещение”, 1986.
  5. Майкл Ди Специо .Занимательные опыты, М.: АСТ Астрель, 2006.
  6. Физика в школе, №6 1998.
  7. Сёмке А.И. Занимательные материалы к уроку, М. “Издательство НЦ ЭНАС”, 2004.
  8. Внеклассная работа по физике, Саратов ОАО “Издательство “Лицей”, 2002.
  9. “Физика” №41/03, с. 22.
  10. “Физика” №20/05, с. 45.
  11. “Физика” №28/1996.(Качественные задачи по физике, М.Е. Тульчинский)

Статическое электричество в природе и технике

Статическое электричество в природе. Интересные факты

1. Впервые электризация жидкости при дроблении была замечена у водопадов Швейцарии в 1 786 г. С 1913г. явление получило название баллоэлектрического эффекта. Эффект электризации наблюдается не только у водопадов на открытой местности, но и в пещерах.

Заряд воздуху у водопадов сообщают микроскопические капельки воды и молекулярные комплексы, которые при дроблении отрываются от водной поверхности и уносятся в окружающую среду.

Наиболее значительный эффект электризации воздуха наблюдается у самых больших водопадов мира — Игуассу на границе Бразилии и Аргентины (высота падения воды — 190 м, ширина потока — 1 500 м) и Виктория на реке Замбези в Африке (высота падения воды — 133 м, ширина потока -1600 м). У водопада Виктория за счет дробления воды возникает электрическое поле напряженностью 25 кВ/м.

При дроблении пресной воды в воздух переходит отрицательный заряд. Поэтому в воздухе у водопадов количество отрицательных ионов превышает количество положительных.

У небольшого водопада Учан-Су в Крыму отношение отрицательных ионов к количеству положительных равно 6,2.

2. У берегов морей воздух приобретает положительный заряд, вследствие разбрызгивания соленой воды. На поверхности морей и океанов разбрызгивание воды начинается при скорости ветра более 10м/с, когда на волнах появляются гребешки пены. Отношение положительных зарядов к отрицательным зарядам в воздухе над Черным и Азовским морями достигает при бурном море 2,04, при зыби- 1,48.

3. Покоритель Джомолунгмы Н. Тенсинг в 1953 г. в районе южного седла этой горной вершины на высоте 7,9 км над уровнем моря при -30 °С и сухом ветре до 25 м/с наблюдал сильную электризацию обледеневших брезентовых палаток, вставленных одна в другую. Пространство между палатками было наполнено многочисленными электрическими искрами.

4. Движение лавин в горах в безлунные ночи иногда сопровождается зеленовато-желтым свечением, благодаря чему лавины становятся видимыми. Обычно световые явления наблюдаются у лавин, движущихся по снежной поверхности, и не наблюдаются у лавин, проносящихся по скалам. На озерах Антарктики во время полярной ночи иногда возникает свечение при разламывании крупных масс озерного льда.

5. Молния выбирает самый короткий путь к земле, поэтому попадает в здания или в деревья. Высокие здания оборудуют металлическими полосами (прутьями), по которым электрический разряд уходит в землю. Это громоотвод. Грозовой разряд идет на землю и обратно по одному и тому же пути.

Это происходит с такой скоростью, что наш глаз видит только одну вспышку. На своем пути молния раскаляет воздух, который, быстро расширяясь, создает звуковую волну. Это вызывает громовые раскаты. Мы слышим их после того, как увидим молнию, так как звук распространяется значительно медленнее, чем свет.

Статическое электричество в технике. Когда электризация тел полезна

Статическое электричество может быть верным помощником человека, если изучить его закономерности и правильно их использовать. В технике применяют метод, сущность которого заключается в следующем.

Мельчайшие твердые или жидкие частицы материала поступают в электрическое поле, где на их поверхность «оседают» электроны и ионы, т. е. частицы приобретают заряд и далее движутся под действием электрического поля.

В зависимости от назначения аппаратуры можно с помощью электрических полей по-разному управлять движением частиц в соответствии с необходимым технологическим процессом. Эта технология уже пробила себе дорогу в различные отрасли народного хозяйства.

Маляр без кисточки

Движущиеся на конвейере окрашиваемые детали, например корпус автомобиля, заряжают положительно, а частицам краски придают отрицательный заряд, и они устремляются к положительно заряженной детали. Слой краски на ней получается тонкий, равномерный и плотный.

Действительно одноименно заряженные частицы красителя отталкиваются друг от друга — отсюда равномерность окрашивающего слоя. Частицы, разогнанные электрическим полем, с силой ударяются об изделие — отсюда плотность окраски.

Расход краски снижается, так как она осаждается только на детали. Метод окраски изделий в электрическом поле сейчас широко применяют в нашей стране.

Электрические копчености

Копчение — это пропитывание продукта древесным дымом. Частицы дыма не только придают продуктам вкус, но и предохраняют их от порчи.

При электрокопчении частицы коптильного дыма заряжают положительно, а отрицательным электродом служит, например, тушка рыбы. Заряженные частички дыма оседают на поверхности тушки и частично поглощаются ею. Все электрокопчение продолжается несколько минут. Прежде копчение считалось длительным процессом.

Электрический ворс

Чтобы получить в электрическом поле слой ворса на каком-либо материале, надо материал заземлить, поверхность покрыть клеящим веществом, а затем через заряженную металлическую сетку, расположенную над этой поверхностью, пропустить порцию ворса. Ворсинки быстро ориентируются в поле и, распределяясь равномерно, оседают на клей строго перпендикулярно поверхности.

Так получают покрытия, похожие на замшу или бархат. Легко получить разноцветный узор, заготовив порции разного по цвету ворса и несколько шаблонов, которыми в процессе электроворсования прикрывают поочередно отдельные участки изделия. Так можно сделать многоцветные ковры.

Как ловят пыль

Чистый воздух нужен не только людям и особо точным производствам. Все машины из-за пыли преждевременно изнашиваются, а каналы их воздушного охлаждения засоряются. Кроме того, часто пыль, улетающая с отходящими газами, представляет собой ценное сырье. Очистка промышленных газов стала необходимостью. Практика показала, что с этим хорошо справляется электрическое поле.

По центру металлической трубы устанавливают проволоку Б, которая служит одним из электродов, вторым являются стенки трубы В. В электрическом поле газ в трубе ионизируется. Отрицательные ионы «прилипают» к частицам дыма, поступающим вместе с газом через вход А, и заряжают их.

Под воздействием поля эти частицы движутся к трубе и осаждаются на ней, а очищенный газ направляется к выходу Д. Трубу время от времени встряхивают, и уловленные частицы поступают в бункер Г. Электрические фильтры на крупных тепловых электростанциях улавливают 99% золы, содержащейся в выходных газах.

Смешение веществ

Если мелкие частицы одного вещества зарядить положительно, а другого — отрицательно, то легко получить их смесь, где частицы распределены равномерно. Например, на хлебозаводе теперь не приходится совершать большую механическую работу, чтобы замесить тесто.

Заряженные положительно крупинки муки воздушным потоком подаются в камеру, где они встречаются с отрицательно заряженными капельками воды, содержащей дрожжи. Крупинки муки и капельки воды, притягиваясь друг к другу, образуют однородное тесто.

Можно привести много других примеров полезного применения статической электризации. Основанная на этом явлении технология удобна: потоком заряженных частиц можно управлять, изменяя электрическое поле, а весь процесс легко автоматизировать.

На самом деле электричество очень популярный источник энергии. Посудите сами: его легко транспортировать, оно легко переводится в другие виды энергии – тепловую, механическую. По этой причине электричество так популярно, ученые придумывают все новые способы применения электричества (например, электромобиль), а также применение новым качествам электричества (например, сверхпроводимость).

Вам наверняка приходилось слышать выражение: «Если отключить воду, газ и электричество, то человек снова станет первобытным»? Это совершенно истинное утверждение. Про воду и газ мы говорить не будем, так как это тема для других книг, а вот без электричества действительно нельзя обойтись.

Во-первых, освещенность наших квартир напрямую зависит от электричества. Лампы накаливания, дневного света, галогенные лампы, без них нам приходилось бы пользоваться хозяйственными свечами или лучинами. Когда отключается во всем доме электричество, растерянные жильцы, как правило, не говорят: «Отключили электричество», говорят – «Отключили свет». Задумайтесь, почему?

Во-вторых, на электричестве работает большинство бытовых приборов, которыми мы пользуемся каждый день, начиная с дверного звонка и заканчивая холодильными установками. Когда отключают электричество, пусть даже и на короткий промежуток времени, то после того, как все успеют зажечь хозяйственные свечи, начинают возмущаться по поводу того, что размораживается холодильник. В такой ситуации уж совсем нелепо вспоминать про пылесос или утюг.

В-третьих, отсутствие электричества явно скажется на нашем культурном уровне: телевизор, видеомагнитофон, магнитофон, видеокамера, радио, компьютер, наконец – все это средства общения с окружающим миром и при отсутствии электрического тока они становятся просто корпусами со множеством никуда не годных микросхем.

Одним словом, электричество – наш большой друг, но бывают ситуации, когда оно становится нашим большим врагом, о чем рассказывает следующая глава.

Электричество в природе

Размещено на http://www.allbest.ru/

1. Электричество

2. История

3. Теория

4. Электричество в природе

5. Образ электричества в культуре

6. Производство и практическое использование

Список используемой литературы

1. Электричество

Электричество — совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов. Термин введён английским естествоиспытателем Уильямом Гилбертом в его сочинении «О магните, магнитных телах и о большом магните — Земле» (1600 год), в котором объясняется действие магнитного компаса и описываются некоторые опыты с наэлектризованными телами. Он установил, что свойством наэлектризовываться обладают и другие вещества.

2. История

Одним из первых электричество привлекло внимание греческого философа Фалеса в VII веке до н. э., который обнаружил, что потёртый о шерсть янтарь (др.-греч.?лекфспн: электрон) приобретает свойства притягивать легкие предметы. Однако долгое время знание об электричестве не шло дальше этого представления. В 1600 году появился сам термин электричество («янтарность»), а в 1663 году магдебургский бургомистр Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания. В 1729 годуангличанин Стивен Грей провел опыты по передаче электричества на расстояние, обнаружив, что не все материалы одинаково передают электричество. В 1733 году француз Шарль Дюфе установил существование двух типов электричества стеклянного и смоляного, которые выявлялись при трении стекла о шелк и смолы о шерсть. В 1745 г. голландец Питер ван Мушенбрук создает первый электрический конденсатор — Лейденская банка.

Первую теорию электричества создает американец Б. Франклин, который рассматривает электричество как «нематериальную жидкость», флюид («Опыты и наблюдения над электричеством», 1747 год). Он также вводит понятие положительного и отрицательного заряда, изобретает молниеотвод и с его помощью доказывает электрическую природу молний. Изучение электричества переходит в категорию точной науки после открытия в 1785 году Закона Кулона.

Далее, в 1791 году, итальянец Гальвани публикует «Трактат о силах электричества при мышечном движении», в котором описывает наличие электрического тока в мышцах животных. Другой итальянец Вольта в 1800 году изобретает первый источник постоянного тока — гальванический элемент, представляющий собой столб из цинковых и серебряных кружочков, разделенных смоченной в подсоленной воде бумагой. В 1802 г. Василий Петров обнаружил вольтову дугу.

Майкл Фарадей — основоположник учения об электромагнитном поле

В 1820 году датский физик Эрстед на опыте обнаружил электромагнитное взаимодействие. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенной вблизи проводника. Французский физик Ампер в 1821 году установил, что связь электричества и магнетизма наблюдается только в случае электрического тока и отсутствует в случае статического электричества. Работы Джоуля, Ленца, Ома расширяют понимание электричества. Гаусс формулирует основную теорему теории электростатического поля (1830).

Опираясь на исследования Эрстеда и Ампера, Фарадей открывает явление электромагнитной индукции в 1831 году и создает на его основе первый в мире генератор электроэнергии, вдвигая в катушку намагниченный сердечник и фиксируя возникновение тока в витках катушки. Фарадей открывает электромагнитную индукцию (1831) и законы электролиза (1834), вводит понятиеэлектрического и магнитного полей. Анализ явления электролиза привел Фарадея к мысли, что носителем электрических сил являются не какие-либо электрические жидкости, а атомы — частицы материи. «Атомы материи каким-то образом одарены электрическими силами», — утверждает он. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории. Фарадей создал и первый в мире электродвигатель — проволочка с током, вращающаяся вокруг магнита. Венцом исследований электромагнетизма явилась разработка английским физиком Д. К. Максвеллом теории электромагнитных явлений. Он вывел уравнения, связывающие воедино электрические и магнитные характеристики поля в1873 году.

В 1880 году Пьер Кюри открывает пьезоэлектричество. В том же году Д. А. Лачинов показал условия передачи электроэнергии на большие расстояния. Герц экспериментально регистрирует электромагнитные волны (1888 год).

В 1897 году Джозеф Томсон открывает материальный носитель электричества — электрон, место которого в структуре атома указал впоследствии Эрнест Резерфорд.

В XX веке была создана теория Квантовой электродинамики. В 1967 году был сделан очередной шаг на пути изучения электричества. С. Вайнберг, А. Салам и Ш. Глэшоу создали объединенную теорию электрослабых взаимодействий.

3. Теория

Электрический заряд — это свойство тел (количественно характеризуемое физической величиной того же названия), проявляющееся, прежде всего, в способности создавать вокруг себя электрическое поле и посредством него оказывать воздействие на другие заряженные (то есть обладающие электрическим зарядом) тела. Электрические заряды разделяют на положительные и отрицательные (выбор, какой именно заряд назвать положительным, а какой отрицательным, считается в науке чисто условным, однако этот выбор уже исторически сделан и теперь — хоть и условно — за каждым из зарядов закреплен вполне определенный знак). Тела, заряженные зарядом одного знака, отталкиваются, а противоположно заряженные — притягиваются. При движении заряженных тел (как макроскопических тел, так и микроскопических заряженных частиц, переносящих электрический ток в проводниках) возникает магнитное поле и имеют, таким образом, место явления, позволяющие установить родство электричества и магнетизма (электромагнетизм) (Эрстед, Фарадей, Максвелл). В структуре материи электрический заряд как свойство тел восходит к заряженным элементарным частицам, например, электрон имеет отрицательный заряд, а протон и позитрон — положительный.

Наиболее общая фундаментальная наука, имеющая предметом электрические заряды, их взаимодействие и поля, ими порождаемые и действующие на них (то есть практически полностью покрывающая тему электричества, за исключением таких деталей, как электрические свойства конкретных веществ, как тоэлектропроводность (и т. п.) — это электродинамика. Квантовые свойства электромагнитных полей, заряженных частиц (и т. п.) изучаются наиболее глубококвантовой электродинамикой, хотя часть из них может быть объяснена более простыми квантовыми теориями.

4. Электричество в природе

Ярким проявлением электричества в природе служат молнии, электрическая природа которых была установлена в XVIII веке. Молнии издавна вызывали лесные пожары. По одной из версий, именно молнии привели к первоначальному синтезу аминокислот и появлению жизни на земле (Эксперимент Миллера — Юри и Теория Опарина — Холдейна).

Для процессов в нервной системе человека и животных решающее значение имеет зависимость пропускной способности клеточной мембраны для ионов натрия от потенциала внутриклеточной среды. После повышения напряжения на клеточной мембране натриевый канал открывается на время порядка 0,1 — 1,0 мс., что приводит к скачкообразному росту напряжения, затем разность потенциалов на мембране снова возвращается к своему первоначальному значению. Описанный процесс кратко называется нервным импульсом. В нервной системе животных и человека информацию от одной клетки к другой передают нервные импульсы возбуждения длительностью около 1 мс. Нервное волокно представляет собой цилиндр, наполненный электролитом. Сигнал возбуждения передается без уменьшения амплитуды вследствие эффекта кратковременного увеличения проницаемости мембраны для ионов натрия.

Многие рыбы используют электричество для защиты и поиска добычи под водой. Разряды напряжения южно-американского электрического угря могут достигать величины напряжения в 500 вольт. Мощность разрядов электрического ската может достигать 0,5 кВт. Акулы, миноги, некоторые сомообразные используют электричество для поиска добычи. Электрический орган рыб работает с частотой несколько сотен герц и создает напряжение в несколько вольт. Электрическое поле улавливается электрорецепторами. Находящиеся в воде предметы искажают электрическое поле. По этим искажениям рыбы легко ориентируются в мутной воде.

5. Образ электричества в культуре

В мифологии существуют боги, способные метать разряды молнии: у греков Зевс, Юпитер, Волгенче из марийского пантеона, Агни — бог индусов, одна из форм которого — молния, Перун — бог-громовержец в древнерусском пантеоне, Тор — бог грома и бури в германо-скандинавской мифологии.

Одной из первых попыталась осмыслить образ электричества Мэри Шелли в драме «Франкенштейн, или Современный Прометей», где оно предстает силой, с помощью которой можно оживлять трупы. В диснеевском мультфильме Чёрный Плащ существует повелевающий электричеством антигерой Мегавольт, а в японской анимации и играх — электрические покемоны (самый известный из которых Пикачу).

6. Производство и практическое использование

фарадей электричество природа заряд

Генерирование и передача

Ранние эксперименты эпохи античности, такие, как опыты Фалеса с янтарными палочками, были фактически первыми попытками изучения вопросов, связанных с производством электрической энергии. Этот метод в настоящее время известен как трибоэлектрический эффект, и хотя с его помощью можно притягивать легкие предметы и порождать искры, в сущности он чрезвычайно малоэффективен. Функциональный источник электричества появился только в XVIII веке, когда было изобретено первое устройство для его получения — вольтов столб. Он и его современный вариант, электрическая батарея, являются химическими источниками электрического тока: в основе их работы лежит взаимодействие веществ в электролите. Батарея дает возможность получить электричество в случае необходимости, является многофункциональным и широко распространенным источником питания, который хорошо подходит для применения в различных условиях и ситуациях, однако ее запас энергии конечен, и после истощения последнего батарея нуждается в замене или перезарядке. Для удовлетворения более существенных потребностей в большем ее объеме электрическая энергия должна непрерывно генерироваться и передаваться по линиям электропередач.

Обычно для ее порождения применяются электромеханические генераторы, приводимые в действие либо за счет сжигания ископаемого топлива, либо с использованием энергии от ядерных реакций, либо посредством силы воздушных или водных течений. Современная паровая турбина, изобретенная Ч. Парсонсом в1884 году, в настоящее время генерирует примерно 80 % всего электричества в мире, используя те или иные источники нагрева. Эти устройства более не напоминают униполярный дисковый генератор Фарадея, созданный им в 1831 году, однако в их основе по-прежнему лежит открытый им принцип электромагнитной индукции — возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Ближе к концу XIX века был изобретен трансформатор, что позволило более эффективно передавать электроэнергию при более высоком напряжении и меньшей силе тока. В свою очередь, эффективность передачи энергии обусловливала возможность генерировать электричество на централизованных электростанциях с выгодой для последних и затем перенаправлять его на довольно протяженные дистанции к конечным потребителям.

Получение электричества из кинетической энергии ветра набирает популярность во многих странах мира

Поскольку электроэнергию затруднительно хранить в таких количествах, которые были бы достаточны в масштабах государства, необходимо соблюдать баланс: генерировать ровно столько электричества, сколько потребляется пользователями. Для этого энергетическим компаниям необходимо тщательно прогнозировать нагрузку и постоянно координировать производственный процесс со своими электростанциями. Некоторое количество мощностей при этом держится в резерве, чтобы в случае возникновения тех или иных проблем или потерь энергии подстраховывать электросети.

По мере того, как идет модернизация и развивается экономика того или иного государства, спрос на электричество быстро возрастает. В частности, для Соединенных Штатов этот показатель составил 12 % роста в год на протяжении первой трети XX века, а в настоящее время аналогичный прогресс наблюдается у таких интенсивно развивающихся экономик, как Китай и Индия. Исторически рост потребности в электричестве опережает аналогичные показатели для других видов энергоносителей. Следует также заметить, что беспокойство по поводу влияния производств электроэнергии на окружающую среду привело к сосредоточению внимания на генерировании электричества посредством возобновляемых источников — в особенности за счет энергии ветра и воды.

Применение

Электрическая лампа

Использование электричества обеспечивает довольно удобный способ передачи энергии, и в силу этого оно было адаптировано для существенного и по сей день растущего спектра практических приложений. Одним из первых общедоступных способов применения электричества было освещение; условия для этого оказались созданы после изобретения лампы накаливания в 1870-х годах. Хотя с электрификацией были сопряжены свои риски, замена открытого огня на электрическое освещение в значительной степени сократило количество возгораний в быту и на производстве.

В целом, начиная с XIX века, электричество плотно входит в жизнь современной цивилизации. Электричество используют не только для освещения, но и для передачи информации (телеграф, телефон, радио, телевидение), а также для приведения механизмов в движение (электродвигатель), что активно используется на транспорте (трамвай, метро, троллейбус, электричка) и в бытовой технике (утюг, кухонный комбайн, стиральная машина, посудомоечная машина).

В целях получения электричества созданы оснащенные электрогенераторами электростанции, а для его хранения — аккумуляторы и электрические батареи.

Сегодня также электричество используют для получения материалов (электролиз), для их обработки (сварка, сверление, резка), умерщвления преступников (электрический стул) и создания музыки (электрогитара).

Закон Джоуля-Ленца о тепловом действии электрического тока обусловливает возможности для электрического отопления помещений. Хотя такой способ довольно универсален и обеспечивает определенную степень управляемости, его можно рассматривать как излишне ресурсозатратный — в силу того, что генерирование используемого в нем электричества уже потребовало производства тепла на электростанции. В некоторых странах, например — в Дании, были даже приняты законодательные нормы, ограничивающие или полностью запрещающие использование электрических средств отопления в новых домах. В то же время электричество — это практичный источник энергии для охлаждения, и одной из активно растущих областей спроса на электричество является кондиционирование воздуха.

Список используемой литературы

1. Боргман И.И.- «Электричество»

2. Матвеев А. Н.- «Электричество и магнетизм»

3. Поль Р. В.- «Учение об электричестве»

4. Тамм И. Е.- «Основы теории электричества»

5. Франклин В.- «Опыты и наблюдения над электричеством»

Размещено на Allbest.ru

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *