Опубликовано

Двигатель на магнитах

Типы и принципы работы

Существует понятие вечных двигателей первого порядка и второго. Первый порядок – это устройства, которые производят энергию сами по себе, из воздуха, второй тип – это двигатели, которым необходимо получать энергию, это может быть ветер, солнечные лучи, вода и т.д., и уже её они преобразовывают в электричество. Согласно первому началу термодинамики, обе эти теории невозможны, но с таким утверждением не согласны многие ученые, которые и начали разработку вечных двигателей второго порядка, работающих на энергии магнитного поля.

Фото – Магнитный двигатель дудышева

Над разработкой «вечного двигателя» трудилось огромное количество ученых во все времена, наиболее большой вклад в развитие теории о магнитном двигателе сделали Никола Тесла, Николай Лазарев, Василий Шкондин, также хорошо известны варианты Лоренца, Говарда Джонсона, Минато и Перендева.

Фото – Магнитный двигатель Лоренца

У каждого из них своя технология, но все они основаны на магнитном поле, которое образовывается вокруг источника. Стоит отметить, что «вечных» двигателей не существует в принципе, т.к. магниты теряют свои способности приблизительно через 300-400 лет.

Самым простым считается самодельный антигравитационный магнитный двигатель Лоренца. Он работает за счет двух разнозаряженных дисков, которые подключаются к источнику питания. Диски наполовину помещаются в полусферический магнитный экран, поле чего их начинают аккуратно вращать. Такой сверхпроводник очень легко выталкивает из себя МП.

Простейший асинхронный электромагнитный двигатель Тесла основан на принципе вращающегося магнитного поля, и способен производить электричество из его энергии. Изолированная металлическая пластина помещается как можно выше над уровнем земли. Другая металлическая пластина помещается в землю. Провод пропускается через металлическую пластину, с одной стороны конденсатора и следующий проводник идет от основания пластины к другой стороне конденсатора. Противоположный полюс конденсатора, будучи подключенным к массе, используется как резервуар для хранения отрицательных зарядов энергии.

Фото – Магнитный двигатель Тесла

Роторный кольцар Лазарева пока что считается единственным работающим ВД2, кроме того, он прост в воспроизведении, его можно собрать своими руками в домашних условиях, имея в пользовании подручные средства. На фото показана схема простого кольцевого двигателя Лазарева:

Фото – Кольцар Лазарева

На схеме видно, что емкость поделена на две части специальной пористой перегородкой, сам Лазарев применял для этого керамический диск. В этот диск установлена трубка, а емкость заполнена жидкостью. Вы для эксперимента можете налить даже простую воду, но желательно применять улетучивающийся раствор, к примеру, бензин.

Работа осуществляется следующим образом: при помощи перегородки, раствор попадает в нижнюю часть емкости, а из-за давления по трубке перемещается наверх. Это пока что только вечное движение, не зависящее от внешних факторов. Для того чтобы соорудить вечный двигатель, нужно под капающей жидкостью расположить колесико. На основе этой технологии и был создан самый простой самовращающийся магнитный электродвигатель постоянного движения, патент зарегистрирован на одну российскую компанию. Нужно под капельницу установить колесико с лопастями, а непосредственно на них разместить магниты. Из-за образовавшегося магнитного поля, колесо начнет вращаться быстрее, быстрее перекачиваться вода и образуется постоянное магнитное поле.

Линейный двигатель Шкондина произвел своего рода революцию в прогрессе. Это устройство очень простой конструкции, но в тоже время невероятно мощное и производительное. Его двигатель называется колесо в колесе, и в основном его используют в современной транспортной отрасли. Согласно отзывам, мотоцикл с мотором Шкондина может проехать 100 километров на паре литров бензина. Магнитная система работает на полное отталкивание. В системе колеса в колесе, есть парные катушки, внутри которых последовательно соединены еще одни катушки, они образовывают двойную пару, у которой разные магнитные поля, за счет чего они двигаются в разные стороны и контрольный клапан. Автономный мотор можно устанавливать на автомобиль, никого не удивит бестопливный мотоцикл на магнитном двигателе, устройства с такой катушкой часто используются для велосипеда или инвалидной коляски. Купить готовый аппарат можно в интернете за 15000 рублей (производство Китай), особенно популярен пускатель V-Gate.

Фото – Двигатель Шкондина

Альтернативный двигатель Перендева – это устройство, которое работает исключительно благодаря магнитам. Используется два круга – статичный и динамичный, на каждом из них в равной последовательности, располагаются магниты. За счет самооталкивающейся свободной силы, внутренний круг вращается бесконечно. Эта система получила широкое применение в обеспечении независимой энергии в домашнем хозяйстве и производстве.

Фото – Двигатель Перендева

Все перечисленные выше изобретения находятся в стадии развития, современные ученые продолжают их совершенствовать и искать идеальный вариант для разработки вечного двигателя второго порядка.

Помимо перечисленных устройств, также популярностью у современных исследователей пользуется вихревой двигатель Алексеенко, аппараты Баумана, Дудышева и Стирлинга.

Как собрать двигатель самостоятельно

Самоделки пользуются огромным спросом на любом форуме электриков, поэтому давайте рассмотрим, как можно собрать дома магнитный двигатель-генератор. Приспособление, которое мы предлагаем сконструировать, состоит из 3 соединенных между собой валов, они скреплены таким образом, что вал в центре повернут прямо к двум боковым. К середине центрального вала прикреплен диск из люцита диаметров четыре дюйма, толщиной в половину дюйма. Внешние валы также оснащены дисками диаметром два дюйма. На них расположены небольшие магниты, восемь штук на большом диске и по четыре на маленьких.

Фото – Магнитный двигатель на подвеске

Ось, на которых расположены отдельные магниты, находится в параллельной валам плоскости. Они установлены таким образом, что концы проходят возле колес с проблеском в минуту. Если эти колеса двигать рукой, то концы магнитной оси будут синхронизироваться. Для ускорения рекомендуется установить алюминиевый брусок в основание системы так, чтобы его конец немного касался магнитных деталей. После таких манипуляций, конструкция должна начать вращаться со скоростью пол оборота в одну секунду.

Приводы установлены специальным образом, при помощи которого валы вращаются аналогично друг другу. Естественно, если воздействовать на систему сторонним предметом, к примеру, пальцем, то она остановится. Этот вечный магнитный двигатель изобрел Бауман, но ему не удалось получить патент, т.к. на тот момент устройство отнесли к разряду непатентуемых ВД.

Для разработки современного варианта такого двигателя многое сделали Черняев и Емельянчиков.

Фото – Принцип работы магнита

Общее устройство и принцип работы

Работы над так называемым вечным двигателем ведутся уже очень давно и не прекращаются в настоящее время. В современных условиях этот вопрос становится все более актуальным, особенно в условиях надвигающегося энергетического кризиса. Поэтому одним из вариантов решения этой проблемы является двигатель свободной энергии на неодимовых магнитах, действие которого основано на энергии магнитного поля. Создание рабочей схемы такого двигателя позволит без каких-либо ограничений получать электрическую, механическую и другие виды энергий.

В настоящее время работы по созданию двигателя находятся в стадии теоретических изысканий, а на практике получены лишь отдельные положительные результаты, позволяющие более подробно изучить принцип действия этих устройств.

Конструкция двигателей на магнитах полностью отличается от обычных электрических моторов, использующих электрический ток в качестве главной движущей силы. В основе работы данной схемы лежит энергия постоянных магнитов, которая и приводит в движение весь механизм. Весь агрегат состоит из трех составных частей: сам двигатель, статор с электромагнитом и ротор с установленным постоянным магнитом.

На одном валу с двигателем устанавливается электромеханический генератор. Дополнительно на весь агрегат устанавливается статический электромагнит, представляющий собой кольцевой магнитопровод. В нем вырезается дуга или сегмент, устанавливается катушка индуктивности. К этой катушке подключается электронный коммутатор для регулировки реверсивного тока и других рабочих процессов.

Самые первые конструкции двигателей изготавливались с металлическими частями, которые должны были подвергаться влиянию магнита. Однако для возвращения такой детали в исходное положение затрачивается такое же количество энергии. То есть, теоретически использование такого двигателя нецелесообразно, поэтому данная проблема была решена путем использования медного проводника, по которому пропущен электрический ток. В результате, возникает притяжение этого проводника к магниту. Когда ток отключается, то прекращается и взаимодействие между магнитом и проводником.

Установлено, что сила воздействия магнита находится в прямой пропорциональной зависимости от ее мощности. Таким образом, постоянный электрический ток и рост силы магнита, увеличивают воздействие этой силы на проводник. Повышенная сила способствует вырабатыванию тока, который затем будет подан на проводник и пройдет через него. В результате, получается своеобразный вечный двигатель на неодимовых магнитах.

Этот принцип был положен в основу усовершенствованного двигателя на неодимовых магнитах. Для его запуска используется индуктивная катушка, в которую подается электрический ток. Полюса постоянного магнита должны быть расположены перпендикулярно зазору, вырезанному в электромагните. Под действием полярности постоянный магнит, установленный на роторе, начинает вращаться. Начинается притяжение его полюсов к электромагнитным полюсам, имеющим противоположное значение.

Когда разноименные полюса совпадают, ток в катушке выключается. Под собственным весом, ротор вместе с постоянным магнитом проходит по инерции данную точку совпадения. При этом, в катушке происходит изменение направления тока, и с наступлением очередного рабочего цикла полюса магнитов становятся одноименными. Это приводит к их отталкиванию друг от друга и дополнительному ускорению ротора.

Конструкция магнитного двигателя своими руками

Конструкция стандартного двигателя на неодимовых магнитах состоит из диска, кожуха и металлического обтекателя. Во многих схемах практикуется использование электрической катушки. Крепление магнитов осуществляется с помощью специальных проводников. Для обеспечения положительной обратной связи используется преобразователь. Некоторые конструкции могут быть дополнены ревербераторами, усиливающими магнитное поле.

В большинстве случаев для того, чтобы собственноручно изготовить магнитный двигатель на неодимовых магнитах, используется схема на подвеске. Основная конструкция состоит из двух дисков и медного кожуха, края которого должны быть тщательно обработаны. Большое значение имеет правильное подключение контактов по заранее составленной схеме. Четыре магнита располагаются с внешней стороны диска, а слой диэлектрика проходит вдоль обтекателя. Применение инерционных преобразователей позволяет избежать возникновения отрицательной энергии. В данной конструкции движение положительно заряженных ионов будет происходить вдоль кожуха. Иногда могут потребоваться магниты с повышенной мощностью.

Двигатель на неодимовых магнитах может быть самостоятельно изготовлен из кулера, установленного в персональном компьютере. В данной конструкции рекомендуется использовать диски с небольшим диаметром, а крепление кожуха выполнять с внешней стороны каждого из них. Для рамы может использоваться любая, наиболее подходящая конструкция. Толщина обтекателей составляет в среднем чуть более 2 мм. Подогретый агент выводится через преобразователь.

Кулоновские силы могут иметь разное значение, в зависимости от заряда ионов. Для повышения параметров охлажденного агента рекомендуется применение изолированной обмотки. Проводники, подключаемые к магнитам, должны быть медными, а толщина токопроводящего слоя выбирается в зависимости от типа обтекателя. Основной проблемой таких конструкций является невысокая отрицательная заряженность. Ее можно решить, используя диски с большим диаметром.

Магнитогидродинамический генератор

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 29 июня 2016 года.
Содержимое этой статьи или раздела нуждается в чистке. Текст содержит много маловажных, неэнциклопедичных или устаревших подробностей. Пожалуйста, улучшите статью в соответствии с правилами написания статей.

МГД-генератор Фарадея с линейным соплом и сегментированными электродами:
entry — входное отверстие для подвода рабочего тела (ионизированного газа);
acceleration nozzle — сопло для увеличения скорости рабочего тела;
solenoids — соленоиды для создания магнитного поля;
segmented electrodes — электроды, разделённые на сегменты для уменьшения эффекта Холла;
output — выходное отверстие для вывода рабочего тела;
красная линия — направление движения положительно заряженных частиц;
синяя линия — направление движения отрицательно заряженных частиц;
B — магнитная индукция;
I — электрический ток;
v — скорость рабочего тела

Магнитогидродинамический генератор, МГД-генератор — энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию.

Принцип действия

Принцип работы МГД-генератора, как и обычного машинного генератора, основан на явлении электромагнитной индукции, то есть — на возникновении тока в проводнике, пересекающем силовые линии магнитного поля. В отличие от машинных генераторов проводником в МГД-генераторе является само рабочее тело.

Рабочее тело движется поперёк магнитного поля, и под действием магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.

На заряженную частицу действует сила Лоренца.

Разделение положительно (q>0) и отрицательно (q<0) заряженных частиц под действием магнитного поля B

Рабочим телом МГД-генератора могут служить следующие среды:

  • электролиты;
  • жидкие металлы;
  • плазма (ионизированный газ).

Первые МГД-генераторы использовали в качестве рабочего тела электропроводные жидкости (электролиты). В настоящее время применяют плазму, в которой носителями зарядов являются в основном свободные электроны и положительные ионы. Под действием магнитного поля носители зарядов отклоняются от траектории, по которой газ двигался бы в отсутствие поля. При этом в сильном магнитном поле может возникать поле Холла (см. эффект Холла) — электрическое поле, образуемое в результате соударений и смещений заряженных частиц в плоскости, перпендикулярной магнитному полю.

Устройство

МГД-генератор состоит из канала, по которому движется рабочее тело (обычно плазма), системы магнитов для создания магнитного поля и электродов, отводящих полученную энергию. В качестве магнитов могут быть использованы электромагниты или постоянные магниты, а также другие источники магнитного поля.

Газ способен проводить (см. электропроводность) электрический ток при нагреве до температуры термической ионизации, составляющей около 10 000 К. Для снижения этой температуры до 2200—2700 К в разогретый газ вводят присадки, содержащие щелочные металлы. Например, введение 1% калия в виде поташа позволяет увеличить электропроводность в десятки раз. Без присадок при температурах 2200—2700 К газ представляет собой низкотемпературную плазму и проводит ток хуже воды.

В отличие от МГД-генератора с жидким рабочим телом, где генерирование электроэнергии идёт только за счёт преобразования части кинетической или потенциальной энергии потока при постоянной температуре, в МГД-генераторах с газовым рабочим телом принципиально возможны три режима:

  • с сохранением температуры и уменьшением кинетической энергии;
  • с сохранением кинетической энергии и уменьшением температуры;
  • со снижением и температуры, и кинетической энергии.

Описание работы МГД-генератора:

  • в камеру сгорания подаются топливо, окислитель и присадки;
  • топливо сгорает и образуются продукты горения — газы;
  • газы проходят через сопло, расширяются и увеличивают свою скорость до сверхзвуковой;
  • газы поступают в камеру, через которую пропускается магнитное поле, и в стенках которой установлены электроды;
  • заряженные частицы из ионизированного газа, оказавшись под влиянием магнитного поля, отклоняются от первоначальной траектории под действием силы Лоренца и устремляются к электродам;
  • между электродами возникает электрический ток.

Классификация

Классификация по продолжительности работы:

  • с длительным временем работы;
  • кратковременного действия;
    • импульсные;
    • взрывные.

Источниками тепла в МГД-генераторах могут быть:

  • реактивные двигатели;
  • ядерные реакторы;
  • теплообменные устройства.

В качестве рабочих тел в МГД-генераторах могут использоваться:

  • продукты сгорания ископаемых топлив;
  • инертные газы с присадками щелочных металлов (или их солей);
  • пары щелочных металлов;
  • двухфазные смеси паров и жидких щелочных металлов;
  • жидкие металлы и электролиты.

По типу рабочего цикла различают МГД-генераторы:

  • с открытым циклом. Рабочее тело (продукты сгорания) смешивается с присадками (щелочными металлами), проходит через рабочую камеру МГД-генератора, очищается от присадок и выбрасывается в атмосферу;
  • с замкнутым циклом. Рабочее тело подаётся в теплообменник (получает тепловую энергию, возникшую при сжигании топлива), поступает в рабочую камеру МГД-генератора, проходит через компрессор и, замыкая цикл, возвращается в теплообменник.

По способу отвода электроэнергии различают МГД-генераторы:

  • кондукционные — генерирующие постоянный или пульсирующий ток (в зависимости от величины изменения магнитного поля или скорости движения рабочего тела). В рабочем теле, протекающем через поперечное магнитное поле, возникает электрический ток. Ток замыкается на внешнюю цепь через съёмные электроды, вмонтированные в боковые стенки канала;
  • индукционные — генерирующие переменный ток. В таких МГД-генераторах электроды отсутствуют, и требуется создание бегущего вдоль канала магнитного поля.

По форме каналы в МГД-генераторах могут быть:

  • линейные (в кондукционных и индукционных генераторах);
  • дисковые и коаксиальные холловские (в кондукционных генераторах);
  • радиальные (в индукционных генераторах).

По конструкции и способу соединения электродов различают следующие МГД-генераторы:

  • фарадеевский генератор. Электроды выполнены сплошными или разделены на секции. Разделение на секции выполняется для уменьшения циркуляции тока вдоль канала и через электроды (для уменьшения эффекта Холла). В результате носители заряда движутся перпендикулярно оси канала на электроды и в нагрузку. Чем значительнее эффект Холла, тем на большее число секций необходимо разделить электроды, причём каждая пара электродов должна иметь свою нагрузку, что весьма усложняет конструкцию установки;
  • холловский генератор. Электроды расположены друг против друга и короткозамкнуты. Напряжение снимается вдоль канала за счёт наличия поля Холла. Применение таких МГД-генераторов наиболее выгодно при больших магнитных полях. За счёт наличия продольного электрического поля, можно получить значительное напряжение на выходе генератора;
  • сериесный генератор. Электроды соединены диагонально.

Наибольшее распространение с 1970-х годов получили кондукционные линейные МГД-генераторы на продуктах сгорания ископаемых топлив с присадками щелочных металлов, работающие по открытому циклу.

История изобретения

Впервые идея использования жидкого проводника была выдвинута Майклом Фарадеем в 1832 году. Он доказал, что в движущемся проводнике, находящемся под действием магнитного поля, возникает электрический ток. В 1832 году Фарадей с помощниками спустил с моста Ватерлоо в воду реки Темза два медных листа. Листы были подключены проводами к гальванометру. Ожидалось, что воды реки, текущей с запада на восток, — движущийся проводник и магнитное поле Земли создадут электрический ток, который зафиксируется гальванометром. Опыт не удался. К возможным причинам неудачи причисляют низкую электропроводность воды и малую величину напряженности магнитного поля Земли.

В дальнейшем, в 1851 году английскому учёному Волластону удалось измерить ЭДС, индуцированную приливными волнами в Ла-Манше, однако отсутствие необходимых знаний по электрофизическим свойствам жидкостей и газов долго тормозило использование описанных эффектов на практике.

В последующие годы исследования развивались по двум основным направлениям:

  • использование эффекта индуцирования ЭДС для измерения скорости движущейся электропроводной среды (например, в расходомерах);
  • генерирование электрической энергии.

Хотя первые патенты на генерирование электричества МГД-генератором с применением ионизированного газа энергии были выданы ещё в 1907—1910 годы, описанные в них конструкции были на практике нереализуемы. Тогда не существовало материалов, способных работать в газовой среде при температуре 2500—3000 °C.

Разработка МГД-генераторов стала возможной после создания теоретической и экспериментальной базы для изучения магнитной гидродинамики. Основные законы МГД были открыты в 1944 году шведским учёным Ханнесом Альфвеном при изучении поведения космической плазмы (плазмы, заполняющей межзвёздное пространство) в магнитном поле.

Первый работающий МГД-генератор был построен только в 1950-х годах благодаря развитию теории магнитной гидродинамики и физики плазмы, исследованиям в области физики высоких температур и созданию к этому времени жаропрочных материалов, использовавшихся тогда, прежде всего, в ракетной технике.

Источником плазмы с температурой 3000 K в первом МГД-генераторе, построенном в США в 1959 году, служил плазмотрон, работавший на аргоне с присадкой щелочного металла для повышения степени ионизации газа. Мощность генератора составляла 11,5 кВт. К середине 1960-х годов мощность МГД-генераторов на продуктах сгорания удалось довести по 32 МВт («Марк-V», США).

В СССР первая лабораторная установка «У-02», работавшая на природном топливе, была создана в 1965 году. В 1971 году была запущена опытно-промышленная энергетическая установка «У-25», имеющая расчётную мощность 20-25 МВт.

«У-25» работала на продуктах сгорания природного газа с добавкой K2CO3 в качестве ионизирующейся присадки, температура потока — около 3000 К. Установка имела два контура:

  • первичный, разомкнутый, в котором преобразование тепла продуктов сгорания в электрическую энергию происходит в МГД-генераторе;
  • вторичный, замкнутый — паросиловой контур, использующий тепло продуктов сгорания вне канала МГД-генератора.

Электрическое оборудование «У-25» состояло из МГД-генератора и инверторной установки, собранной на ртутных игнитронах.

Модель магнитогидродинамической установки У-25, Государственный Политехнический музей (Москва)

В России промышленный МГД-генератор строился в Новомичуринске Рязанской области, где рядом с Рязанской ГРЭС была специально построена МГДЭС. Однако генератор так и не был запущен в эксплуатацию. С начала 1990-х годов работы были полностью свёрнуты, а МГД-электростанция, без МГД-генератора работающая как обычная тепловая электростанция, после нескольких преобразований в конце концов была присоединена к Рязанской ГРЭС.

В ходе геофизического эксперимента «Хибины» в середине 1970-х годов в СССР по электрозондированию земной коры использовался импульсный МГД-генератор с максимальной мощностью 100 МВт, силой тока 20 КА и временем работы около 10 с.

Применение

Теоретически, существуют пять направлений промышленного применения МГД-генераторов:

  1. тепловые электростанции с МГД-генератором на продуктах сгорания топлива (открытый цикл); такие установки наиболее просты и имеют ближайшую перспективу промышленного применения;
  2. атомные электростанции с МГД-генератором на инертном газе, нагреваемом в ядерном реакторе (закрытый цикл); перспективность этого направления зависит от развития ядерных реакторов с температурой рабочего тела свыше 2000 K;
  3. термоядерные электростанции безнейтронного цикла (например, D + 3He → p + 4He + 18,353 МэВ) c МГД-генератором на высокотемпературной плазме;
  4. циклы с МГД-генератором на жидком металле, которые перспективны для атомной энергетики и для специальных энергетических установок сравнительно небольшой мощности;
  5. гиперзвуковые авиационные системы. (свыше max 4).

Энергетические установки с МГД-генератором могут применяться также как резервные или аварийные источники энергии в энергосистемах, для бортовых систем питания космической техники, в качестве источников питания различных устройств, требующих больших мощностей на короткие промежутки времени (например, для питания электроподогревателей аэродинамических труб и т. п.).

Несмотря на заманчивые перспективы и бурное развитие исследований в области МГД-генераторов в 1970-е годы, устройства на их основе так и не нашли широкого промышленного применения. Камнем преткновения является отсутствие материалов для стенок генератора и электродов, способных работать при возникающих запредельных температурах достаточно долгое время.

Другой проблемой является то, что МГД-генераторы выдают только постоянный ток. Соответственно, необходимы мощные и экономичные инверторы.

В телевизионных учебных передачах по физике, выходящих в СССР в конце 1980-х годов, сообщалось, что в Рязанской области запущен и работает промышленный МГД-генератор, что не соответствовало действительности: он так и не заработал. Речь идёт о Рязанской ГРЭС-24. Разработка установки велась, но столкнулась с определёнными проблемами. В конечном итоге создание МГД-генератора отменили, а паровой котел установки был введён в эксплуатацию в 1984 году автономно. В установке предусматривалась МГД-часть мощностью 500 МВт и следующая за ней газотурбинная надстройка мощностью 300—310 МВт. Последняя впоследствии была доведена отдельно и введена в эксплуатацию 1 июня 2010 года.

> См. также

  • МГД-динамо
  • Плазма
  • Yamato 1
Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *