Опубликовано

Драйвер для полевого транзистора

Преобразователь напряжения на полевых транзисторах, 12В — 220В/50Гц

Микросхема КР1211ЕУ1 имеет прямой и инверсный выход. Это выводы 4 и 6 соответственно. Уровень сигнала на этих выходах достаточен для непосредственного управления выходными транзисторами: транзисторы открываются импульсами высокого уровня. Причем между ними самой микросхемой формируется пауза (низкий уровень), которая на некоторый промежуток времени, иногда его называют «мертвым временем», удерживает оба транзистора в закрытом состоянии. Это сделано для того, чтобы исключить появление сквозного тока при открытии обоих ключей сразу.

Частота генератора задается цепочкой R1 – C1, ее можно рассчитать по формуле:

Чтобы получить частоту f в герцах, надо подставить:

R1 — в килоомах;
С1 — в нанофарадах.

Цепь R2 – C2 используется в качестве пусковой.

Вывод 1 микросхемы позволяет осуществить отключение генерации импульсов, для чего на него необходимо подать высокий уровень. Это свойство можно использовать для дистанционного управления или для защиты. В данной схеме эта функция не используется, поэтому вывод 1 просто соединен с общим проводом.

Трансформатор можно применить любой готовый, у которого есть две выходные обмотки на 12В. Мощность трансформатора зависит от нагрузки и должна быть в 2,5 раза выше: предположим, что мощность нагрузки 30Вт. Тогда мощность трансформатора должна быть не менее 30*2,5 = 75Вт.

Я использовал трансформатор ТС-180-2 от старого черно-белого телевизора (см. Рис.2). Мощность трансформатора 180 Вт.

Рис.2. Преобразователь напряжения на трансформаторе ТС-180-2

Правда, трансформатор пришлось перемотать. Первичку оставил, поскольку она рассчитана на 220 В (в преобразователе она служит вторичкой). А первичку (точнее две первички) для преобразователя намотал самостоятельно (предварительно сняв все ненужные обмотки). Мотал медным проводом в диаметре 2,5 мм. На 12 В в трансформаторе ТС-180-2 необходимо намотать 38 витков. Можно намотать чуть меньше, тогда выходное напряжение будет чуть выше. Это необходимо учесть, поскольку при включении нагрузки выходное напряжение падает.

Такая переделка позволяет с легкостью подключать нагрузку даже свыше 100 Вт. Ну и полевики, конечно поставил на радиатор (см. Рис.2, Рис.3). При включении лампочки 100 Вт радиаторы чуть теплые, а трансформатор — холодный.

Рис.3. Преобразователь напряжения на микросхеме КР1211ЕУ1

Микросхема КР1211ЕУ1 получает питание от параметрического стабилизатора R3, VD1, C3. В качестве стабилитрона VD1 подойдет любой с напряжением стабилизации 8…10В.

Электролитические конденсаторы импортные. Если нет конденсаторов на 10000 мкф, (С4, С5) их можно заменить конденсаторами емкостью 4700 мкф, включив их параллельно.

Конденсатор С6 служит для подавления на выходе высокочастотных импульсов. Он может быть типа К-73-17 или подобный ему импортный.

При монтаже не следует забывать о том, что уже при мощности в 400Вт ток, потребляемый от аккумулятора по цепи 12В, может достигать 40А, поэтому провода для присоединения к аккумулятору должны быть достаточного сечения и минимально возможной длины.

Нагрузку к устройству можно подключать любую, как активную (лампа накаливания, паяльник, и др. нагреватели), так и индуктивную (электродвигатель, трансформатор и т.п.) или емкостную . Главное чтобы соответствовало напряжению и мощности преобразователя.

Видео работы преобразователя напряжения:

Файлы к проекту:

Сегодня для закрепления материала про полевики рассмотрим схемы на полевых транзисторах и обсудим принцип их работы. Предыдущие статьи про ПТ вот тут – раз и два.

Начнем..

Схема истокового повторителя.

Биполярным аналогом этого устройства является эмиттерный повторитель (о нем шла речь ). Вот как выглядит простейший повторитель на ПТ:

Ну давайте разбираться что же и как этот повторитель повторяет 😉 Напряжение на выходе:

Ток стока мы можем определить через напряжение затвор-исток следующим образом:

Подставляем в формулу для и получаем вот что:

И если сопротивление нагрузки намного превышает величину , то мы получаем довольно-таки хороший повторитель ().

Но у этой схемы есть парочка существенных недостатков. Во-первых, характеристики ПТ трудно поддаются контролю при изготовлении, поэтому такой истоковый повторитель может иметь непредсказуемое смещение по постоянному току. А во-вторых, такой повторитель имеет довольно-таки большое выходное сопротивление, соответственно, амплитуда выходного сигнала все-таки будет меньше, чем амплитуда сигнала на входе.

Более качественный повторитель получается при использовании согласованных пар ПТ. Такая схема выглядит следующим образом:

Рассмотрим работу данной схемы. Полевик Q2 задает определенный ток. Этот ток соответствует напряжению затвор-исток, равному нулю. Транзисторы включены последовательно, значит через Q1 течет такой же ток, а так как полевики абсолютно одинаковые, то и для Q1 напряжение затвор-исток равно нулю. В то же время:

Вот и получаем, что , то есть напряжение на выходе повторяет сигнал на входе.

Эту схему истокового повторителя можно еще модернизировать, добавив резисторы в цепь истока. С помощью подбора их значений можно установить разные значения тока стока:

На этом заканчиваем с истоковыми повторителями и переходим к некоторым другим схемам на полевых транзисторах )

Схема ключа на полевом транзисторе.

Здесь мы видим n-канальный МОП-транзистор. При заземленном затворе полевик находится в закрытом состоянии и, соответственно, входной сигнал не проходит на выход. Если подать на затвор напряжение, например, +10 В, то ПТ перейдет в открытое состояние и сигнал практически беспрепятственно пройдет на выход.

Тут особо и объяснять нечего )

Теперь перейдем к логическим элементам (вентилям) на МОП-транзисторах. И начнем с вариантов исполнения логического инвертора. Посмотрите на схемку:

Что вообще должен делать инвертор? Очевидно, что инвертировать сигнал ) То есть подаем на вход сигнал низкого уровня, на выходе получаем высокий уровень и наоборот. Давайте смотреть как это все работает. Если на входе низкий уровень сигнала, то n-канальный МОП-транзистор закрыт, ток через резистор нагрузки не течет, соответственно, все напряжение Vcc оказывается на выходе. А если на входе высокий уровень, то ПТ во включенном состоянии проводит ток, при этом на нагрузке появляется напряжение, а потенциал стока (выходной сигнал) практически равен нулю (низкий уровень). Вот так вот это схема и работает )

Рассмотрим еще один вариант инвертора, но уже с использованием p-канального ПТ:

Работает эта схема аналогично схеме инвертора на n-канальном транзисторе, поэтому останавливаться на этом не будем.

Есть один большой минус у обеих этих схем – это высокое выходное сопротивление. Можно, конечно, уменьшать , но при это рассеиваемая мощность будет увеличиваться (она обратно пропорциональна квадрату сопротивления). Как вы понимаете, в этом нет ничего хорошего. Отличной альтернативой этим схемам инверторов является схема на комплементарных МОП-транзисторах (КМОП). Она имеет следующий вид:

Итак, пусть у нас на входе сигнал высокого уровня. Тогда p-канальный МОП-транзистор Q2 будет выключен, а Q1, напротив, будет во включенном состоянии. При этом на выходе будет сигнал низкого уровня. А что если на входе низкий уровень? А тогда наоборот Q1 будет выключен, а Q2 включен, и на выходе окажется сигнал высокого уровня. Вот и все )

Пожалуй, рассмотрим теперь еще одну схемку на полевиках – схему логического вентиля И-НЕ. Этот вентиль имеет два входа и один выход, и и низкий уровень должен быть на выходе только в том случае, когда на оба входа подан сигнал высокого уровня. Во всех остальных случаях на выходе сигнал высокого уровня.

Смотрите, как это работает. Если на Входе 1 и Входе 2 высокий уровень, то оба n-канальных транзистора Q1 и Q2 проводят ток, а p-канальные Q3 и Q4 закрыты, и на выходе окажется сигнал низкого уровня. Если на одном из входов сигнал низкого уровня, то один из транзисторов Q3, Q4 открыт, а, соответственно, один из транзисторов Q2, Q1 закрыт. Тогда цепь Q1-Q2-земля разомкнута, а на выход через открытый транзистор Q3 или Q4 попадает напряжение высокого уровня. Вот и получается, что низкий уровень на выходе возможен только если на обоих входах сигнал высокого уровня.

Заканчиваем на этом разговор о полевых транзисторах, мы сегодня рассмотрели схемы на полевых транзисторах и кроме того разобрались как они работают ) Так что до скорых встреч на нашем сайте!

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *