Опубликовано

Для чего можно использовать raspberry pi?

Принцип работы

Умный дом на базе Raspberry Pi 3 популярен, благодаря легкости сборки, в том числе для людей без специального опыта. Основой всей системы является небольшая материнская плата, в которую производитель заложил огромный потенциал.

Первоначально компания продавала две комплектации прибора — модели А и В. Первая отличалась объем памяти размером в 256 МБ, а вторая в два раза большим ее размером.

Модель А какое-то время была в продаже, благодаря наличию доступа к глобальной сети, но после обновления до версии «В» в первом варианте отпала необходимость. Новая версия отличалась компактностью и наличием четырех портов USB.

Построение умного дома на основе Raspberry Pi 3 зависит от предпочтений владельца. Вне зависимости от этого, принцип работы остается неизменным:

  1. Главную функцию выполняет сервер. Это центральное устройство, собирающее информацию и производящее необходимые вычисления. Роль главного сервера играет материнская плата Raspberry Pi, на которую инсталлируется WEB-интерфейс. Его особенность заключается в возможности связи с планшетом, ноутбуком или телефоном.
  2. Сервер находится во взаимосвязи с окружающими его модулями. Контакт осуществляется с помощью RS-485. Для обеспечения слаженного функционирования системы в каждой комнате устанавливается специальный контроллер. Его задача заключается в приеме и анализе поступающей информации с последующей отправкой команд на исполняющие устройства (изделия бытовой техники).
  3. Связь модуля Raspberry Pi с контроллерами обеспечивается с помощью UART-порта. К последнему подключается специальный проводник на интерфейс RS-485. Стоит учесть, что в последних моделях устройства уже предусмотрен такой интерфейс (он идет уже в базе).
  4. В роли операционной системы выступает Raspberry. В комплексе с ней работает одно из доступных расширений, к примеру, Pimatic.

При желании система умный дом может быть собрана на платформе «открытого» типа, к примеру, Fhem, openHAB, SHC. Не менее востребованный вариант — применение платформы wiBulter.

Где применяется Raspberry Pi 3 Model B

Сфера применения умного дома на базе Raspberry Pi ограничивается только познаниями установщика и пожеланиями владельца дома. Здесь возможны следующие варианты:

  1. Применение в качестве полного компьютера. При желании к системе можно подключить дисплей и клавиатуру, подсоединить мышку, а после пользоваться полученным ПК на Windows Последнее возможно только для Raspberry Pi B, а также моделей 2B или 3B.
  2. Сбор множества небольших компьютеров Raspberry Pi для получения ПК с большим числом ядер и высокой производительностью. Для этого требуется соединить в один сервер требуемое число изделий и найти удобное место для размещения. Также придется решить вопрос с охлаждением конструкции. Готовый компьютер по производительности не уступит даже наиболее мощному CPU, приобретенному за несколько сотен долларов.
  3. Инсталляция на Raspberry эмулятора консоли, скачивание игровых образов, подключение монитора и джойстика. Этого достаточно для превращения системы в игровую платформу для развлечений.
  4. Подключение сенсорного дисплея диагональю 8-15 дюймов, создание деревянного или металлического корпуса и установка ОС Android. В результате получается многофункциональный планшет, сделанный своими силами.
  5. Создание собственной осветительной системы для улицы или дома посредством настройки умного дома Raspberry Pi. При желании будут загораться только определенные лампочки, что позволяет удивить любимых и близких людей.
  6. Обустройство настенного органайзера. Все, что требуется — подключить уменьшенную версию ПК к дисплею, настроить ОС и закрепить конструкцию на стене.

Возможности умного дома на Raspberry Pi позволяют использовать конструкцию в качестве приставки, домашней метеостанции, охранной системы или планшета. Возможности применения почти не ограничены.

Особенности и характеристики Raspberry Pi 3 Model B

Устройство представляет собой компактный компьютер, имеющий размеры пластиковой карты банка. На чипе установлено необходимое оборудование для работы — CPU, «оперативка», HDMI-разъем, USB и композитный выход. Также имеется Ethernet-разъем, беспроводная связь и блютуз.

В блоке Raspberry Pi 3 Model B предусмотрено четыре десятка вводных и выводных контактов базового назначения. Они предназначены для подключения периферийных устройств, нуждающихся во взаимодействии с остальными элементами внешнего мира. Речь идет о коммутации с сенсорами и исполнительными изделиями, работающими от сети.

Базовая ОС для умного дома на Raspberry Pi 3 — Linux. Операционная система инсталлируется на карту памяти типа microSD, которая устанавливаемся в специальном разъеме платы.

Многие ранее работали только с Windows и бояться Linux. В этой ОС нет ничего необычного. Она проста в пользовании и отличается высоким уровнем безопасности. Если при установке допущены ошибки в настройке, их легко исправить путем восстановления образа.

Версия Raspberry Pi 3 Model — более продвинутый вариант второй модели. Новая плата отличается полной совместимостью с прошлой версией, но отличается большей производительностью и дополнительными средствами для подключения:

  1. Появилась беспроводная связь Wi-Fi серии 802.11n и блютуз 4.1.
  2. Предусмотрен процессор с четырьмя ядрами (тип — ARM Cortex-A53). Частота работы составляет 1,2 гигагерца. В основе лежит однокристальный чип типа Broadcom BCM

В CPU предусмотрена архитектура ARM v53. Это позволяет использовать любую операционную систему, к примеру, Ubuntu или Windows 10.

Применение 4-ядервного чипа гарантирует рост мощности изделия на 50-60 процентов (если сравнивать со второй модель) и на 1000 процентов в сравнении с первым Raspberry Pi.

Благодаря этой особенности, мини ПК открывает еще больше возможностей по созданию сложных проектов умного дома, что на фоне доступа к Сети открывает почти безграничные перспективы.

Новая модель Raspberry Pi 3 наделена «оперативкой» на 1 ГБ. Часть этой памяти применяется графической подсистемой. Что касается графической части, здесь установлен 2-ядерный CPU VideoCore IV.

Система поддерживает разные стандарты типа OpenGL ES 2.0, VC-1, OpenVG, MPEG-2. Дополнительные возможности — способность кодировать, раскодировать и выводить полноэкранное видео формата HD на экран. Параметры видео — 1080p, 60 FPS, H.264.

Преимущества Raspberry Pi 3 Model B

Умный дом на базе Raspberry Pi 3 Model B имеет ряд неоспоримых плюсов:

  1. Наличие большого выбора интерфейсов, позволяющих максимально расширить возможности системы. Здесь предусмотрен блютуз, имеется Wi-Fi, порты HDMI и USB.
  2. Возможность подключения модема GSM для выхода на связь с оператором, предоставляющим услуги глобальной сети.
  3. Наличие мощного процессора с четырьмя ядрами на 1,2 ГГц, способного решать серьезные задачи.
  4. Полная совместимость новой и предыдущей версии.
  5. Компактность. Устройство имеет небольшие размеры, а весит всего 45 грамм.
  6. Доступность разгона. При желании доступно увеличение производительности системы.
  7. Легкость применения. Программирование Raspberry Pi 3 Model B можно осуществлять на разных языках.

Также стоит выделить ряд преимуществ умного дома, построенного на базе Raspberry Pi 3 Model B:

  1. Возможность обезопасить здание путем защиты от потопа, установки видеонаблюдения, создания противопожарной и охранной систем.
  2. Установка систем, повышающих комфорт. Речь идет об электрических приборах, а также специальных устройствах, управляющих шторками.
  3. Возможность инсталляции системы, обеспечивающей дополнительную экономию. Применяются сенсорные смесители, датчики движения, а также датчики, фиксирующие перемещение человека или животных.
  4. Доступность инсталляции развлекательных специальных систем. К примеру, к умному дому на Raspberry Pi 3 Model B можно подключить мультирум или домашний кинотеатр.

Для полноты картины стоит учитывать и ряд минусов, характерных для умного дома на Raspberry Pi 3 Model B:

  1. Монтаж таких устройств подойдет для крупных особняков, расположенных вне черты города и имеющих большую площадь.
  2. Для установки нужно знать особенности и правила применения каждого из элементов. В крайнем случае, под рукой желательно иметь квалифицированного специалиста, готового в любой момент помочь в интересующем вопросе.
  3. Со временем умный дом, построенный на Raspberry Pi 3 Model B, устареет. По этой причине возможны трудности с поиском необходимых компонентов (в случае поломки).

В целом, устройство имеет больше положительных качеств, поэтому заслуживает внимание людей, желающих обустроить комфортный и удобный в эксплуатации дом.

Модули, которые можно использовать

Для расширения функциональности умного дома на Raspberry Pi 3 Model B можно использовать дополнительные модули. Их применение расширяет число доступных опций и позволяет создать уникальную систему, обеспечивающую максимальное удобство:

  1. ВИДЕОКАМЕРА. Подключение этого модуля позволяет дополнить умный дом системой видеонаблюдения. Камера совмещается с операционной системой небольшого ПК Raspberry Pi 3 Model B. После установки устройства можно фиксировать видео в разрешении Full HD и делать фотографии с разрешением в 5 МП.
  2. ДАТЧИКИ ДЫМА И ВОДЫ. Установка этих модулей позволяет защитить имущество от пожара и протечки соответственно. Для владельцев больших домов это полезная опция, позволяющая избежать неприятностей. В случае задымления или потопа система оперативно информирует владельца о наличии проблем.
  3. ИЗМЕРИТЕЛЬ ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ ВОЗДУХА. С помощью таких модулей можно превратить умный дом на базе Raspberry Pi 3 Model B в метеостанцию с подробными сведениями о ситуации за окном и внутри помещения.
  4. ДАТЧИК ДВИЖЕНИЯ. Подключение устройства позволяет автоматически включать и отключать свет в помещениях. Датчик движения полезен на улице, в гараже, в коридоре и других нежилых помещениях.
  5. МОДУЛЬ БЕСПРОВОДНОЙ СВЯЗИ. Для объединения внешних устройств и контроллера можно использовать приемник и передатчик, работающие на частоте 433 Гц. При наличии средств можно купить более прогрессивный вариант устройства — Z-Wave Fibaro Home Center

Применение указанных датчиков расширяет возможности умного дома и повышает уровень его защиты.

Первые настройки и подготовка к работе

Для начала стоит ознакомиться с инструкцией и рекомендацией производителя относительно применения устройства. Стоит убедиться в наличии необходимых датчиков и спланировать их подключение. Плата установлена в специальной коробке, защищающей изделие от механических воздействий. Устройство не люфтит и выглядит весьма солидно.

После снятия верхней крышки можно получить доступ к плате. Единственная трудность заключается в подключении бокового разъема. Для удобства рекомендуется покупать угловой шлейф.

Дополнительно покупается два радиатора, предназначенные для охлаждения контроллера Ethernet и основного чипа.

Есть и другие решения.

Для первого пуска потребуется карта памяти, с установленной на нее операционной системой. Минимальный размер флешки должен быть от 4 Гб и более. Образ ОС доступен в Интернете (ссылка на скачивание ниже). Также потребуется программа Win32 Disc Imager.

После скачивания образа на ноутбук его необходимо распаковать из архива, после чего вставить карту памяти в кардридер. Далее запускается уже установленная программа Win32 Disc Imager.

Как только работа завершена, с помощью программы выбирается образ и записывается на флеш-накопитель.

Далее достается карту памяти с образом и вставляется в устройство Raspberry Pi 3 Model B. После этого подключается клавиатура, дисплей и мышка. При желании можно использовать беспроводную клавиатуру.

Сборка системы умный дом

Во избежание проблем приведем подробную инструкцию по сборке системы и подготовки ее к работе. Алгоритм действий имеет следующий вид:

  1. Вход на официальный сайт устройства Raspberry Pi 3 Model B и скачивание требуемой версии ОС.
  2. Покупка и форматирование карты памяти Micro SD. Загрузка на ее образа ОС.
  3. Установка карты в разъем материнской платы для установки ОС.

На этом настройка Raspberry Pi 3 Model B завершена.

  1. Инсталляция Node JS. Прохождение этого этапа потребуется для полноценной работы NodeMCU ESP-12E.
  2. Установка Homebridge и настройка автоматического пуска с Root-правами (устройство должно запускаться после включения Raspberry Pi 3 Model B).
  3. Подключение внешних модулей по специальной схеме.

После завершения указанных работ необходимо зайти в мобильный телефон и открыть приложение Home. После этого стоит добавить платформу Raspberry Pi.

По завершении процесса авторизации пользователю доступно управление разными устройствами в квартире или доме.

Владелец управляет освещением, знает точную информацию о влажности и температуре, получает сведения о наличии протечки или задымлении (при появлении таких проблем).

Это лишь часть возможностей умного дома на Raspberry Pi 3 Model B, которые получает владелец.

Перейдя посылке можно ознакомиться с полной инструкцией по установки Raspberry Pi 3 Model B.

Что может получиться смотрите на видео.

Итоги

Умный дом на базе Raspberry Pi 3 Model B — удобная альтернатива уже существующих и более дорогостоящих устройств. Особенность платформы заключается в компактности, возможности расширения функционала и небольшой цене. К ней можно подключить разные внешние модули, не переживая о проблемах с совместимостью.

Для успешного подключения и установки рекомендуется знание принципов работы с командной строкой. Для этого требуется подготовить систему к работе, найти необходимые материалы в Сети и выполнить настройку.

Несмотря на временные затраты, результатом труда является мощная и удобная система, обеспечивающая полную автоматизацию дома. В дальнейшем к ней можно подключить мультимедийные и иные устройства.

Появившийся в 1998 году гипертекстовый протокол управления кофеваркой HTCPCP/1.0 ныне незаслуженно забыт. Чтобы воскресить заложенные в него создателями идеи, реализуем кофеварку с управлением от Raspberry Pi.

Многие любители кофе мечтают, чтобы к пробуждению их уже ждал горячий кофе. На мечты наложились разговоры про «умный дом», контроллеры, сенсоры, а тут еще я заказал плату Raspberry Pi (RPi) «на поиграть» — в общем, судьба ее была решена. Если в 1998-м управление кофеваркой через веб действительно выглядело забавным, то в наше время это вполне можно сделать своими руками. С такой же игрушкой, как RPi, радости будет вдвойне. На ее фоне пылящийся в коробке Ардуино Мега 2560 кажется случайно попавшим в будущее из мира 8-разрядных процессоров 80–90-х годов раритетом, к которому зачем-то прикрутили Wi-Fi, шилды и сенсоры.

Но вернемся на кухню за кофе. Кофеварку включаем с помощью реле, реле управляем с RPi, доступ к RPi из браузера по Wi-Fi. Проснувшись, прямо из кровати с помощью браузера в телефоне. И смотрим, как оно заваривается, через веб-камеру. Либо детектируем движение, и кофе начинает завариваться в тот момент, когда мы заходим на кухню или включаем свет. Настоящий гик сможет включить кофеварку из постели через SSH, настоящий лентяй — просто зайдя на кухню, простой же пользователь вроде меня — через браузер.

Операционная система

Основной операционной системой на данный момент является Raspbian, основанный на Debian, с поддержкой аппаратного сопроцессора для операций с плавающей запятой. На странице загрузки можно загрузить не только его (нужен Raspbian «wheezy»), но и несколько других, также основанных на Linux, вместе с необходимыми утилитами.

Образ карты нужно скачать на диск, разархивировать, затем, если все делается под Windows, залить с помощью утилиты Win32DiskImager (ссылка есть на странице загрузки), на SD-карту, размер которой должен быть от 2 Гб. Далеко не любая SD-карта заработает — есть список совместимых карт и другого оборудования, но даже использование карт из этого списка не гарантирует, что конкретная карта не является подделкой. Если RPi не грузится из образа, только что залитого на карту, первое, что стоит попробовать, — сменить карту SD.

После установки SD-карты в RPi, включения и загрузки (имя пользователя по умолчанию pi, пароль — raspberry) выводится начальное конфигурационное меню, в котором нужно обязательно расширить файловую систему с 2 Гб образа на всю SD-карту и разрешить SSH. Кроме того, стоит задать раскладку клавиатуры, языки, временную зону и сменить пароль по умолчанию.

С оверклокингом лучше экспериментировать отдельно, сразу после его изменения проверяя стабильность RPi. Но попробовать его стоит, так как увеличение скорости работы заметно визуально . В конфигурационное меню всегда можно вернуться командой:

$ sudo raspi-config

После завершения начальной настройки перезагрузиться:

$ sudo reboot

Следующим шагом стоит обновить пакеты — разработка под RPi идет очень активно, и крупные обновления выходят очень часто.

$ sudo apt-get update $ sudo apt-get upgrade

Рис. 1. Конфигурационное меню raspi-config

ВЕБ-КАМЕРА И MOTION

В качестве веб-камеры в моем варианте используется Logitech HD Webcam C525. При приобретении новой веб-камеры стоит свериться со списком оборудования, совместимого сRPI, некоторым может потребоваться USB-хаб с дополнительным питанием. Кроме того, стоит проверить совместимость с Motion по ссылкам «Working Devices» и «Non Working Devices». Если камеры нет в списке «Working Devices», это еще не значит, что она не заработает, но из второго списка камеру покупать точно не стоит.

$ lsusb <..> Bus 001 Device 007: ID 046d:0826 Logitech, Inc.

Проверить камеру можно, попробовав сделать скриншот с камеры:

$ sudo apt-get install uvccapture $ uvccapture -S80 -B80 -C80 -G80 -x800 -y600

В текущем каталоге должен появиться файл snap.jpg (даже если были сообщения об ошибках), который можно открыть на RPi с помощью Image Viewer. Motion — приложение для мониторинга сигнала с камеры, позволяющее установить, что значительная часть изображения изменилась (то есть определить движение в кадре), и в этом случае сохранять изображения и запускать внешние программы. Домашняя страница проекта.

$ sudo apt-get install motion

Чтобы разрешить автозапуск Motion:

$ sudo nano /etc/default/motion # set to ‘yes’ to enable the motion daemon start_motion_daemon=yes

Разрешить доступ к веб-интерфейсу Motion с внешних хостов:

$ sudo nano /etc/motion/motion.conf webcam_localhost off control_localhost off

В этом же файле хранятся настройки детектирования движения, начала и завершения записи с камеры и запуска внешней программы при детектировании движения.

$ sudo nano /etc/motion/motion.conf # Command to be executed when a motion frame is detected (default: none) on_event_start sudo /home/pi/motion-det

/home/pi/motion-det — сценарий, который будет выполняться при детектировании движения. Ему понадобятся права root для управления портами. Добавить пользователя Motion (motion) в список sudoers:

$ sudo visudo

дописав следующую строку в конце файла:

motion ALL=(ALL) NOPASSWD: ALL

Запуск с выводом информации в консоль:

$ sudo motion -n

Когда Motion запущен, настройки можно изменить из браузера по адресу: //:8080

Вместо нужно подставить фактический IP-адрес RPi. Увидеть изображение с камеры можно по адресу //:8081

В Firefox обновление изображения может происходить некорректно. В Chrome все ОK. Предустановленные на RPi браузеры вообще не могут его отобразить. Для настройки определения движения предусмотрен конфигурационный режим

$ sudo motion -s

В этом режиме при просмотре изображении с камеры будет показано различными цветами непосредственно детектирование движения, и можно будет скорректировать параметры детектирования на странице настроек.

Изображения с камеры сохраняются в каталоге /tmp/motion, формат отдельных изображений по умолчанию jpg, роликов — swf. Формат можно изменить в конфигурационном файле. А отключить сохранение файлов можно так:

output_normal off ffmpeg_cap_new off

ПОРТЫ GPIO — ОСОБЕННОСТИ И УПРАВЛЕНИЕ

У RPi есть встроенные порты ввода-вывода. Называются они GPIO, General Purpose Input/Output, то есть порты ввода-вывода общего назначения. Строго говоря, подключить исполнительное устройство можно без особых проблем и к простому ПК, но не держать же ПК на кухне? Тем и хороша недорогая и миниатюрная RPi — ее спокойно можно разместить рядом с исполнительным устройством.

GPIO-порты работают на уровнях 3,3 В. При этом на плате RPi не предусмотрено защиты портов, и случайное замыкание 5 В на них может оказаться смертельным.

Максимальный выходной ток, который может держать отдельно взятый порт, — 16 мА. Это значение задается программно, в диапазоне от 2 до 16 мА, после сброса оно составляет 8 мА. Однако источник питания 3,3 В спроектирован из расчета, что максимальный ток по каждому порту (предполагая, что к ним подключена максимальная нагрузка) не превышает 2 мА. То есть если ко всем портам подключить нагрузку в 16 мА, ее не выдержит источник 3,3 В. Более подробно о допустимом токе можно прочитать , а пример на С, как им можно управлять, — .

Распайка портов и примеры доступа к ним из различных языков программирования приведены здесь: bit.ly/StAJXA.

Есть две основных версии плат, Revision 1 и 2, в них немного различается распайка и назначение портов. Чтобы определить, какая версия, нужно ввести команду cat /proc/cpuinfo и найти hardware revision code в таблице: Дополнительная информация о различиях Revision 1 и 2 есть .

Питание +5 В и 3,3 В, земля (GND) и порт GPIO 4, который мы будем дальше использовать, в обеих версиях размещаются на тех же контактах. Разработчики RPi неоднократно отмечают опасность сжечь порт или всю RPi при неправильном подключении порта. Чтобы этого не произошло, порт рекомендуется защитить от ошибочных действий. Схемы защиты портов (а кроме того, примеры подключения различной периферии) можно посмотреть .

Доступ к портам

Самый простой способ управления портом — из командной строки. Состояние порта при этом можно проконтролировать вольтметром. Все действия делают под рутом.

$ sudo -i

Начало работы с портом:

$ echo «4» > /sys/class/gpio/export

Режим работы — вывод:

$ echo «out» > /sys/class/gpio/gpio4/direction

Вывод значений:

$ echo «1» > /sys/class/gpio/gpio4/value $ echo «0» > /sys/class/gpio/gpio4/value

Режим работы — ввод:

$ echo «in» > /sys/class/gpio/gpio4/direction

Считать значение на входе порта:

$ cat /sys/class/gpio/gpio4/value

Завершить работу с портом:

$ echo «4» > /sys/class/gpio/unexport

Подготовим скрипт для управления заданным портом, который будем использовать позже:

$ sudo nano switch_gpio

Текст:

#! /bin/bash PORT_NUM=$1 if ; then NEW_VALUE=1 else if ; then NEW_VALUE=0 else echo ‘Usage: $0 PORT_NUM on|off’ exit fi fi # Настраиваем порт GPIO на вывод if then echo $PORT_NUM > /sys/class/gpio/export fi # Читаем старое состояние OLD_VALUE=$(cat /sys/class/gpio/gpio$PORT_NUM/value) if ; then OLD_VALUE_TEXT=’on’ else OLD_VALUE_TEXT=’off’ fi echo «out» > /sys/class/gpio/gpio$PORT_NUM/direction echo -ne ‘Switching GPIO ‘$PORT_NUM’ from ‘$OLD_VALUE_TEXT’ to ‘$2’…’ echo $NEW_VALUE > /sys/class/gpio/gpio$PORT_NUM/value echo ‘ done.’

Права на исполнение:

$ chmod +x switch_gpio

И проверим:

$ switch_gpio 4 on $ switch_gpio 4 off

МОДУЛЬ РЕЛЕ

Подключение реле реализовано по схеме из этой статьи. В нормальном положении, когда на выходе порта GPIO логический ноль и нулевой потенциал, транзистор закрыт и напряжение на нагрузку не подается. Если на GPIO подать логическую единицу, 3,3 В через резистор откроют транзистор, через него потечет ток и реле сработает. Диод предназначен для снятия отрицательных бросков при отключении реле.

Задействованы другое реле (по нему чуть позже) и транзистор с диодом — те, которые оказались под рукой, близкие по характеристикам. Резистор R1 (1 кОм), диод типа КД522 (1N4148), транзистор H547. В статье есть рекомендации, как выбрать аналоги. Дополнительно стоит проверить выходной ток порта при включенном реле.

Рис. 3. Принципиальная схема модуля подключения реле

Подключаемая к схеме нагрузка составляет 640 Вт. Это значит, что при напряжении в 220 В ток составит 640 Вт / 220 В = 2,9 А. Еще одно требование к реле — чтобы замыкались и размыкались сразу два провода и нагрузка полностью обесточивалась. Один из вариантов, подходящий под такие требования, — реле TRIL-5VDC-SD-2CM-R, управляемое от 5 В и способное коммутировать до 8 А переменного тока 250 В.

Начать монтаж можно на контактной макетной плате. Конечно, для серьезных задач она не подходит, но такие вот небольшие схемы на ней можно быстро собрать и отладить. Сначала запитываем от отдельного источника +5 В, все проверяем без подключения к RPi, заменив подключение к порту резистором и кнопкой к +5 В, промеряем все токи и ставим разъем для подключения к основной плате RPi. Подключать 220 В к такой плате категорически нельзя, поэтому все равно придется брать паяльник в руки и переносить это на печатную плату.

Для подключения к основной плате RPi можно собрать шлейф из пары разъемов и плоского кабеля, подключить к нему промежуточную плату, на которой уже разводятся нужные порты и питание на шлейфы к периферийным устройствам, пока всего на один, уже не 26-, а 4-проводной шлейф. Он подключается к монтажной плате, на которой собирается в точности то же, что и в первом варианте, добавлением клеммников для 220 В. Клеммники распаиваем на реле проводом сечением 0,75, аккуратно проверяем тестером работоспособность схемы, пощелкав реле. Дополнительно можно развести землю. Затем подключаем провода к клеммам, также сечением 0,75, на одномй из которых ставится вилка, на другой — розетка на провод.

Рис. 4. Первый вариант модуля реле на контактной макетной плате

Дальше осторожно и аккуратно: 220 В частотой 50 Гц — напряжение, при неаккуратной работе с которым последствия могут быть намного трагичнее, чем сгоревшая RPi. Визуально проверяем пайку на плате реле, проверяем надежность закрепления проводов 220 В в клеммники. Фиксируем плату, а лучше устанавливаем ее в закрытый корпус, чтобы случайно не задеть открытые контакты под напряжением. Не торопимся и последовательно на каждом шагу проверяем тестером. Отключаем плату реле от основной платы RPi, втыкаем вилку в 220. Дыма нет. Отключаем от сети, подключаем основную плату RPi, опять включаем в 220. Дыма опять нет, RPi жива. Щелкаем реле, видим 220 на розетке. Отключаем реле и 220, подключаем к розетке настольную лампу, подаем 220, щелкаем реле. Ура!

Рис. 5. Второй вариант модуля реле, распаянный на печатной макетной плате
с промежуточной коммутационной платой

Переводим дух и, установив плату реле в корпус на постоянной основе, пробуем уже в окончательном варианте, с кофеваркой в качестве нагрузки.

УПРАВЛЕНИЕ ПОРТАМИ С ПОМОЩЬЮ WEBIOPI

Самый простой способ достучаться до портов GPIO через веб — установить WebIOPi. Это приложение, позволяющее визуально задавать направление работы порта (ввод/вывод), видеть его состояние при вводе и задавать значение на выводе.

Установка подробно описана .

$ sudo apt-get install apache2 php5

Для работы WebIOPi использует модуль rewrite и переопределение конфигурации (.htaccess):

$ sudo a2enmod rewrite $ sudo nano /etc/apache2/sites-enabled/000-default

В разделе <Directory /var/www/> изменить строку «AllowOverride None» на «AllowOverride All»:

<Directory /var/www/> Options Indexes FollowSymLinks MultiViews AllowOverride All Order allow,deny allow from all </Directory>

Добавить пользователя Apache (www-data) в список sudoers:

$ sudo visudo

Дописав следующую строку в конце файла:

www-data ALL=(ALL) NOPASSWD: ALL

Рестартовать Apache:

$ sudo /etc/init.d/apache2 restart

Загрузка и разархивация WebIOPi:

$ wget //webiopi.googlecode.com/files/WebIOPi-0.3.tar.gz $ tar xvzf WebIOPi-0.3.tar.gz

Переместить файлы в соответствующий каталог:

$ sudo mv webiopi /var/www

Основной интерфейс доступен по адресу: //localhost/webiopi.

Если открывать страницу непосредственно с RPi, то нужно это делать в Chromium или Midori, ни в NetSurf, ни в Dillo она не работает из-за отсутствия в них поддержки JavaScript.

ЗАКЛЮЧЕНИЕ

Большая часть компонентов приобретена в «Чип и дип» (включая корпуса, кабельные вводы, платы, переходник и так далее). Это магазин с хорошим выбором, в который можно зайти, посмотреть и потрогать, но недешевый, есть ощутимо бюджетнее. Те, кто не хочет долго ждать доставки RPi, уже могут ее приобрести, например в «Терраэлектронике», хотя и совсем не за 25 долларов.

Чтобы не помешала темнота зимними утрами, вместо камеры (или в дополнение к ней) можно подключить ИК датчик движения. Можно разобраться в кофеварке эспрессо с автоматическим приготовлением и не задумываться вечером о том, что нужно засыпать кофе на следующее утро. Можно подключить реле через ZygBee, добавить других исполнительных устройств, например светильник в спальне. Можно реализовать управление через SMS, подключив 3G-модем, либо с обычного телефона через DTMF, подняв Asterisk или Freeswitch. А можно написать приложение для Андроида и iPhone/iPad.

Вариантов очень много, и с появлением RPi возможности экспериментировать на границе между программированием и физическим миром резко расширились. Да, и, конечно, ближайшего первого апреля нужно будет задуматься о полной поддержке стандарта RFC 2324.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *