Опубликовано

Алюминиево воздушный аккумулятор

Структура графена

Графен является разновидностью графита — вещества, состоящего из атомов углерода. Кристалл графита состоит из слоёв, которые напоминают сложенные стопкой листы бумаги. Атомное взаимодействие между слоями слабее, чем в их середине, поэтому графит так хорошо подходит в качестве стержня для карандашей.

Это свойство и позволило расщепить его на отдельные слои и получить новое вещество под названием «графен», обладающее теми же свойствами, что и графит, но в несколько раз усиленными. Такой результат является прорывом для развития электроники, а также производства батарей и аккумуляторов, ведь природный графит обладает великолепной тепло- и электропроводностью. Это позволит заменить графеном дорогостоящие материалы, использующиеся сейчас в производстве, ведь графит имеется в природе в изобилии.

Графен имеет предельно простую кристаллическую структуру, уменьшающую сопротивление потоку электронов, поэтому может накапливать заряд намного быстрее, чем объёмные кристаллы. И заряд этот намного мощнее. Эти свойства позволят создавать из него батареи и аккумуляторы, имеющие намного лучшие технические характеристики, чем у используемых сейчас.

Устройство батарей и аккумуляторов

Принцип действия и устройство графеновых аккумуляторов те же, что и обычных аккумуляторных батарей, установленных на автомобилях с двигателями внутреннего сгорания. Отличие в электрохимических процессах, происходящих внутри устройства. Больше всего они сходны с реакцией, идущей в литий-полимерной аккумуляторной батарее.

Сейчас существуют два конкурирующих технологических направления по производству графеновых аккумуляторов. Разработаны они в США и России:

  • в американской модели источники химической реакции состоят из кобальтата лития, а также катода из перемежающихся кремниевых и графеновых пластин;
  • во втором — российском — варианте был создан магний-графеновый аккумулятор, в котором используемая как анод литиевая соль была заменена оксидом магния, который дешевле и менее токсичен.

В обоих случаях происходит увеличение скорости прохождения ионов между электродами и ёмкости аккумуляторов, потому что графен имеет высокую электропроницаемость и склонность к накапливанию электрического заряда. Отличаются лишь оценки возможной ёмкости. Американские специалисты считают, что она увеличится по сравнению с литий-ионными аккумуляторами в десять раз, а русские — до двух с половиной раз.

Другие разработки

Работы по усовершенствованию графеновых аккумуляторов кроме России и США активно ведутся и в других странах.

Учёным Австралии удалось открыть способ удержания графеновых пластин в стабильном состоянии. Ведь их неустойчивость, стремление вернуться в трёхмерное состояние, свойственное обычному графиту, была одной из основных проблем этого материала. Чтобы предотвращать это, учёные поместили пластины графена в водяной гель, что предотвращает их слипание. Кроме того, аккумулятор такой конструкции можно будет заряжать за считанные секунды. Стоимость геля невысока, ведь он состоит всего лишь из воды и углерода.

Практически каждый год в мире появляются новые технологии, которые позволяют более рационально использовать истощающиеся естественные ресурсы. К ним относится и изобретение графена, который в недалёком будущем, возможно, вызовет революционные изменения в транспортной системе благодаря своим уникальным свойствам в большом объёме аккумулировать и сохранять электрическую энергию. Вполне вероятно, каждый желающий сможет с помощью 3 D -принтера сделать графеновый аккумулятор своими руками.

Графит + вода = будущее аккумуляторов

Сочетание двух самых обыкновенных материалов — графита и воды, может позволить создать системы хранения энергии, которые будут не только показывать эффективность сравнимую с литий-ионными аккумуляторами, но и превзойдут их по части таких показателей как скорость перезарядки, которая займет считанные секунды, и срок службы.

Доктор Дэн Ли с кафедры материаловедения университета Монаша в Австралии, и его команда, работают с материалом под названием графен, который может стать основой для создания следующего поколения ультрабыстрых систем хранения энергии.

«Как только мы научимся манипулировать этим материалом, ваш iPhone, к примеру, будет заряжаться всего за несколько секунд или даже быстрее», — сказал доктор Ли.

Графен — это тот же дешевый и широко распространенный графит, используемый в простых карандашах, только толщиной в один атом. В такой форме, данный материал приобретает удивительные свойства.

Графен крепок, химически стабилен, прекрасно проводит электричество и, что важно, имеет чрезвычайно большую площадь поверхности. По словам доктора Ли, эти качества делают графен идеальным кандидатом на роль материала для хранения энергии.

«Причина, по которой графен пока не стал распространен более широко, заключается в том, что эти очень тонкие пленки, собранные в макроструктуру, сразу же объединяются друг с другом, преобразуясь в графит. Когда графен собирается в комки, большая часть площади поверхности теряется, и исчезают его ценные свойства».

Доктор Ли, со своей командой, открыл способ сохранения замечательных свойств отдельных слоев графена. Оказалось, что секрет прост: необходимо всего лишь добавить воды. Влажный графен — в форме геля, приобретает отталкивающие силы между слоями и предотвращает формирование комков и утолщений. Это позволит начать применять данный материал для создания новых технологий.

«Это очень простая техника, которая с легкостью масштабируется. Когда мы ее открыли, то не могли в это поверить. Мы берем два простых, недорогих материала — воду и графит — и создаем новый наноматериал с поразительными свойствами», — сказал доктор Ли.

Графеновый гель значительно превосходит современные углеродные технологии в области устройств хранения энергии, как по количеству хранимого заряда, так и по скорости заряда. По словам доктора Ли, область применения этой новой нанотехнологии простирается далеко за пределы потребительской электроники.

«Высокоскоростные, надежные и недорогие системы хранения энергии являются критически важным компонентом для будущего альтернативной энергетики. Такие системы, являются ключевым элементом, которого не хватает для повсеместного внедрения электрических автомобилей.

«Графеновый гель также может найти применение в мембранах очищения воды, биомедицинских устройствах и датчиках».

Оригинал (на англ. языке): Physorg

Металло-воздушный источник тока

Разместил 13.05.2009 nik34

nik34 прислал:

Металловоздушный источник тока вполне можно использовать в походных условиях для питания различной аппаратуры и зарядки аккумуляторов, хотя он не так хорошо знаком потребителям, как солнечные батареи или даже экзотические топливные элементы. Да и на этом сайте он ещё «не засветился». Восполним этот пробел.

Поделиться этой страницей в:


Немного теории.
Металловоздушный источник тока (далее МВИТ) представляет собой разновидность гальванического элемента в котором гальваническая пара образуется между металлическим анодом и пассивным катодом.
В качестве анода используют какой-нибудь активный металл (алюминий, магний, цинк или их сплавы с активирующими добавками). В процессе работы металл анода постепенно растворяется превращаясь в гидрооксид.
Катодом часто служит пористая проводящая структура, например, из блоков активированого угля. Катод должен одновременно хорошо доставлять кислород воздуха вглубь электролита и быть пропитан этим электролитом.
На катоде под действием катализатора протекает реакция восстановления кислорода в водном растворе электролита в соответствии с уравнением:
O2+2H2O+4e-__—> 4OH-
На аноде происходит растворение металла с освобождением электронов, поступающих во внешнюю электрическую цепь, и выделение газообразного водорода. Анодная реакция протекает в соответствии с уравнением:
Me+OH-__—> MeOH+e-+H2
Суммарная токообразующая реакция имеет вид:
Me+H2O __—> MeOH + H2+e-
здесь Ме — металл.
Кстати, для алюминия реакция имеет следующий вид:
(3.1) 4Al + 6H2O + 3O2 = 4Al(OH)3 + 12е−
(3.2) 2Al + 6H2O = 2Al(OH)3 + 3H2 + 6е−
около 3Ач на 1 грамм металла.

Таким образом, в результате электрохимического растворения металлического анода в ХИТ генерируется электроэнергия. Продуктами реакции являются гидроксид металла и водород. ()
Практическая реализация.
Думаю, наиболее полное представление о данном «звере» даст «Руководство по эксплуатации», которое написано одним из производителей данных источников тока. (Среди производителей встречается ООО «МВИТ», «СВЭЛ», и другие.)
Итак, с небольшими сокращениями.

1. Применение, устройство, принцип работы.
Металло-воздушный источник тока (МВИТ) предназначен для питания любых потребителей с номинальным напряжением от 1 до 12 В (осветительные приборы, теле-радиоаппаратура, телефоны, спутниковые терминалы, светосигнальные ограждения и т. д.), а также для зарядки аккумуляторов с номинальным напряжением от 1 до 12 В.
МВИТ — состоит из металло-воздушного (MB) модуля и дополнительного повышающего преобразователя-стабилизатора напряжения (ПС) или без него. Сам же MB модуль состоит из нескольких (от 2 до 6) последовательно соединенных MB элементов и несущих трубок с ручками. Каждый МВ элемент представляет собой бак с крышкой, внутри которого установлены по 2 магниевых (или алюминиевых) анода, которые расходуются вместе с водой при работе модуля. Израсходованные аноды заменяются новыми. MB элемент имеет по два токовыводящих контакта, отмеченных на крышке знаками «+» и «-» соответственно.
Для получения электроэнергии в баки MB элементов необходимо залить раствор поваренной соли в воде (100-150 г/л) до указанного уровня, закрыть крышки и соединить перемычками MB элементы последовательно. Потребители электроэнергии подключаются к положительным и отрицательным контактам крайних элементов как непосредственно, так и через преобразователь.

Фото взяты .
2. Требования безопасности.
2.1. МВИТ не содержит вредных и ядовитых веществ и не представляет опасности для людей и окружающей среды как при работе, так и при утилизации.
2.2. По условиям эксплуатации модуль относится к устройствам, работающим под наблюдением потребителя.
2.3. При работе MB элемент выделяет водород- от 0,01 до 0,04 г на 1Вт*ч вырабатываемой электрической энергии.
2.4. Залитый электролитом модуль должен использоваться на открытом воздухе, в вентилируемом или хорошо проветриваемом помещении.
2.5. Не разрешается использовать и хранить залитый модуль во взрывоопасных средах, а также вблизи открытого огня на расстоянии менее 1 м.
2.5. Не рекомендуется размещать подключаемую радио и телевизионную аппаратуру над модулем.
2.6. Для обеспечения нормальной работы модуля не рекомендуется закрывать верхнюю часть модуля полиэтиленовой пленкой или другим
материалом, препятствующим свободному газообмену,
2.7. Не рекомендуется использовать для промывки модуля жесткие предметы во избежание повреждения рабочих поверхностей элементов.
Если поверхность анодов выработана (ёмкость МВИТ исчерпана) остатки анодов необходимо снять, анодные отверстия прочистить насухо. В дальнейшем для возобновления электропитания необходимо будет установить новые аноды и залить новый электролит.

С целью более длительного использования 1 комплекта анодов и сохранения ресурса работы модуля, запрещается хранить закрытый модуль в залитом состоянии более 24 часов. В противном случае рекомендуется открыть крышки, промыть рабочие поверхности водой до полного удаления продуктов реакции и установить на просушку. В баки долить простой воды до первоначального уровня.
3.3. Модуль имеет самоограничение по току короткого замыкания (КЗ) и КЗ на 1-3 мин. ускоряет достижение требуемого режима работы.
3.4. Так как в элементах имеются дренажные клапаны для выхода пароводородной смеси, залитый модуль должен устанавливаться на горизонтальную поверхность.
3.5. МВИТ следует оберегать от ударов и повреждений.
3.6. Так как при работе МВИТ выделяет тепло, нельзя создавать вокруг МВИТ препятствия для свободного теплообмена.
4. Технические характеристики МВИТ, питание через преобразователь-стабилизатор, зарядка аккумуляторов.
Металло-воздушные источники тока обозначаются в зависимости от напряжения и емкости следующим образом: МВИТ-U/Е или МВИТ-U/E-ПС. U — номинальное напряжение MB модуля; Е — ёмкость модуля в Ваттчасах.
Наличие букв «ПС» в конце обозначает комплектование МВИТ преобразователем-стабилизатором. Например: МВИТ4-1000ПС состоит из MB модуля с напряжением 4 В ёмкостью 1000 Вт*ч и преобразователя-стабилизатора напряжения на 12 В.
Напряжение МВИТ без ПС сильно зависит от тока нагрузки.
Например: напряжение МВИТ4-1000 при токе нагрузки 10 А составляет 4 В, в то время как при токе 1 А — 6 В. При последовательном соединении 2-х МВИТ6-1500, например для получения 12В без ПС, диапазон значений напряжения такой системы в зависимости от тока нагрузки составляет от 8 до 20.4 В. При разряде на постоянную нагрузку MB модули обеспечивают стабильность напряжения +/- 10% в течение всего времени разряда. (Вид вольтамперных характеристик можно глянуть в конце статьи. Прим.ред.)
Для преобразования и стабилизации напряжения МВИТ в комплекте с MB модулями прилагается повышающий стабилизатор, поддерживающий стабильное выходное напряжение 12В+/- 10% при различных токах нагрузки.

На передней панели ПС расположены выходы различного типа для питания потребителей электроэнергии с напряжением 12В. Подключение производится при помощи проводов либо с использованием выхода типа «прикуриватель», при этом необходимо следить за соблюдением полярности. Переключатель выходного напряжения на передней панели ПС в этом случае должен находиться в положение 12 В.
Кнопка КЗ, расположенная на передней панели ПС, способствует более быстрому выходу МВИТ на режим, что наиболее актуально при отрицательных температурах окружающей среды или холодном электролите. При однократном нажатии без фиксации на эту кнопку происходит короткое замыкание модуля в течении — 1 минуты. Отключение режима КЗ происходит автоматически через — 1 минуту.
Для перехода в режим зарядки внешнего свинцового 12 В аккумулятора необходимо: установить переключатель напряжения в положение 16 В (или в положение 7.3 В для зарядки аккумуляторов с напряжением 6 В) и соединить проводами аккумулятор с выходом ПС, соблюдая полярность. В процессе зарядки МВИТ сам устанавливает зарядный ток и автоматически уменьшает его в конце, что позволяет довести цикл зарядки аккумулятора до конца. Время зарядки аккумуляторов емкостью 55 А*ч и 7.2 А*ч в зависимости от типа МВИТ приведено в таблице ниже. Конец зарядки сигнализирует светодиод красного цвета, расположенный на проводах. В случае если масса анодов или электролита в модуле были не достаточны для полной зарядки вашего аккумулятора, для продолжения зарядки необходимо их заменить. Например: 1 заправка МВИТ4-1000ПС новыми анодами и электролитом позволяет полностью зарядить аккумулятор емкостью 55 А*ч.
Допускается одновременное питание нагрузки и зарядка аккумуляторов.
В случае длительного использования МВИТ рекомендуется доливать в MB элементы каждые 8-10 часов работы по 50 мл. воды через дренажные клапаны.
Табл.1. Технические характеристики МВИТ с ПС

Табл.2 Технические характеристики МВИТ без ПС

6. Транспортировка и хранение.
6.1. Транспортирование и хранение МВИТ осуществляется при температурах окружающей среды от -60°С до + 50°С при условии отсутствия в воздухе паров химически активных веществ.
6.2. Транспортирование МВИТ производится всеми видами транспортных средств.
6.3. Транспортирование и хранение МВИТ до момента продажи должны осуществляться в упаковке предприятия-изготовителя.
Ну, и напоследок, о стоимости данных источников на весну 2009г.

Цена одного анода 50р. (в каждой ячейке 2 электрода)
Цена одного элемента МВИТ 885р.
———————————————————————————————————————————
Напоследок, ещё один пример металло-воздушного источника тока, который выпускает «».

Металло-воздушные батареи (МВИТ) типоразмеров 3-2,5МВ30, 27-2,5МВ30, 4-1МВ12, 12-1МВ12, 12-10МВ20, 12-10МВ120 являются источниками тока двойного назначения и могут применяться как для бытовых нужд: электропитания освети-тельных приборов, бытовой теле-радиоаппаратуры, средств связи, различного электроинструмента, так и в интересах Министерства Обороны: электропитания приборов обеспечения стрельбы артиллерии, артиллерийских квантовых дальномеров, переносных станций радиолокационной разведки, переносных радиостанций спутниковой связи, автономного электропитания оборудования, приборов и военной техники, зарядки аккумуляторов в полевых условиях.
Батареи МВИТ представляют собой первичные, механически-перезаряжаемые источники тока. Аноды в МВИТ изготовлены из магниевого сплава, газодиффузионные катоды изготовлены на основе угольно-фторопластовой композиции. Корпус батареи выполнен из литьевого армамида. Электролитом является раствор поваренной соли в воде 100 г NaCl в 1000 мл Н2О. Вода, применяемая для получения электролита может быть взята из любых водоемов, включая морские и не должна содержать твердых механических включений.
Металло-воздушные батареи являются многоразовыми источниками тока, не требуют подзарядки от электрической сети, их перезарядка обеспечивается путем механической замены электролита и расходуемых анодов.
Металло-воздушные батареи предназначены для эксплуатации в полевых условиях при температуре окружающего воздуха от минус 15 С до плюс 60 С.
Конструкция изделия обеспечивает непроливаемость электролита при кратковременном (до 5 минут) опрокидывании батареи на 180°, в том числе и в рабочем состоянии.
ОСНОВНЫЕ ДОСТОИНСТВА МВИТ:
— экологическая безопасность батареи (отсутствие едких или ядовитых продуктов реакции);
— удельная энергоемкость сухозаряженной батареи до — 400 Вт ч/кг;
— удельная энергоемкость залитой батареи до — 250 Вт час/кг;
— длительные сроки хранения до 10 лет.
На базе имеющихся технических наработок ОАО «Уралэлемент» может разработать МВИТ практически любой ёмкости, напряжения и мощности в соответствии с техническими требованиями заказчика.
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ:

Максимальное время работы в непрерывном режиме: 12 час.
Минимальное количество рабочих циклов: 20.
Разрядные характеристики батареи:

Разрядные характеристики базового элемента:

———————————————————————————————————————————-
Оригинал статьи расположен на сайте . При перепечатке ссылка обязательна.
>Вода + анод = сероводород

Для чего нужен магниевый или алюминиевый анод для водонагревателя — бойлера

Электрохимическая коррозия разрушает металл анода — специального защитного покрытия из цинка, или электрода из магния, алюминия или того же цинка. При отсутствии защитного электрода, анодом будет являться и разрушаться металл сварных швов бака водонагревателя.

Водопроводная вода с растворенными в ней солями является проводником электрического тока — электролитом. Из школьного курса физики известно, что если в электролит поместить два электрода из разных металлов, то образуется гальванический элемент. Один из электродов получает положительный потенциал — анод, другой — отрицательный, катод. В результате электрохимической реакции в электролите, металл анода взаимодействует с кислородом, растворенным в воде. Металл анода разрушается, превращается в окислы, ржавчину. Второй электрод — катод, не корродирует.

В баке водонагревателя всегда есть детали, изготовленные из разных металлов — бак из стали, ТЭН из меди. Медь в этой паре будет катодом, а стальной бак — анодом.

Если даже все детали в баке сделаны из нержавейки, то сварные швы имеют отличия в составе металла. Совсем небольшие примеси на поверхности металла сварного шва образуют с металлом бака гальванический элемент и создают условия для электрохимической коррозии металла шва. Металл шва в этом гальваническом элементе является анодом и будет постепенно разрушаться.

Для защиты металла бака и сварного шва от электрохимической коррозии, в электролит помещают электрод, изготовленный из металла с большим отрицательным потенциалом. Такой электрод будет иметь потенциал анода, как с металлом стального бака, так и сварного шва. А защищаемый металл будет выступать в роли катода. В результате, металл анода будет корродировать и медленно разрушаться, а металл катода (бак и сварные швы) не будет страдать от ржавчины.

Такой способ защиты называют протекторной защитой от коррозии, а сам электрод называют анодом протекторной защиты. Анод иногда выгодно делать в виде покрытия одного металла другим. Например, сталь часто покрывают слоем цинка и получают оцинкованную сталь. Слой цинка в которой служит анодом.

К металлу, используемому в качестве материала протектора, предъявляются следующие основные требования:

  • Электродный потенциал материала протектора должен быть существенно более отрицательным, чем потенциал защищаемого металла;
  • Количество электричества, получаемое при электрохимическом растворении единицы массы протектора, должно быть как можно большим.

Этим требованиям, для протекторной защиты стальных и медных деталей, лучше всего соответствуют, и чаще всего используются электроды из магния, алюминия или цинка. Ионы цинка, Zn2+ , токсичны. Поэтому, по санитарным соображениям оцинкованную сталь и цинковые аноды в водонагревателях не применяют.

Для защиты от коррозии стальных баков электроводонагревателей, их производители, обычно применяют аноды из магния. Электроды из алюминия создают в электролите меньшую разность потенциалов с другими металлами, чем аноды из магния. На рынке можно найти алюминиевые аноды для водонагревателей сторонних производителей.

Таблица. Некоторые электрохимические свойства магния и алюминия

Электроды анодов делают из специальных сплавов основного металла. Образование плотной окисной пленки препятствует прохождению тока у технически чистого алюминия и обычных технических сплавов металлов. Введение в сплавы специальных добавок позволяет получить электроды с более отрицательными, чем у основного металла, потенциалами. Протекторы из сплавов остаются активными, равномерно корродируют и не становятся пассивными в среде, где они используется.

Магниевый анод может содержать какой-то процент алюминия, а в сплав алюминиевого электрода обязательно добавляют цинк и магний. Кроме того, для улучшения свойств, в состав металла часто добавляют другие элементы, например, редкоземельный индий. У каждого производителя состав и свойства анодов могут быть другими.

Каждый протектор имеет свой радиус защитного действия, который зависит как от размеров и свойств анода, так и от параметров электролита и защищаемого металла. Размеры анода, а также количество электродов в баке, выбирают в зависимости от площади поверхности защищаемого металла и наличия электроизолирующих покрытий (краска, стеклоэмаль и т.п.) на его поверхности. Чем больше поверхность открытого, без защитных покрытий, металла в баке, тем больше должны быть размеры анода или/и их число.

Скорость разрушения, эрозии анода, также зависит от состава металла электрода и электропроводности воды. Протекторы из магния должны эксплуатироваться в воде с рН 9,5 – 10,5. Если рН воды меньше, то увеличивается скорость растворения магниевого электрода. При выборе анода рекомендую руководствоваться указаниями заводской инструкции.

Все металлические детали в баке водонагревателя должны иметь электрический контакт с анодом. Нельзя анод просто положить в бак, или прижать пластиковыми стяжками к трубкам датчиков, как советуют некоторые «специалисты».

Недостатки анодной протекторной защиты от коррозии

Если сдвиг потенциала анода в отрицательную сторону превысит определённое значение, возможна так называемая перезащита, которая приводит к выделению водорода на катоде, к изменению состава приэлектродного слоя и к другим процессам. Все эти процессы способствуют отслаиванию защитного (изоляционного) покрытия в баке и ускорению коррозии защищаемого металла.

Чтобы исключить перезащиту и не допустить недозащиту, величина разности потенциалов анода и катода должна находиться в определенных пределах в зависимости от целого ряда факторов, которые могут меняться. Причем, в случае значительного изменения этих факторов необходимо менять и величину потенциала анода. То есть, величину разности потенциалов между анодом и катодом необходимо измерять, контролировать и регулировать.

В водонагревателях высокой ценовой категории применяют более совершенную, регулируемую катодную защиту от коррозии. Сдвиг потенциала защищаемого металлического объекта осуществляется с помощью внешнего источника постоянного тока. Разность потенциалов между титановым анодом и баком водонагревателя регулируется электроникой по заданной программе.

Практика эксплуатации бюджетных водонагревателей с протекторной защитой свидетельствует о том, что не всегда удается исключить перезащиту, используя, рекомендуемый производителем, магниевый анод.

Для простого, протекторного способа защиты водонагревателей, единственный способ не допустить перезащиту и уменьшить потенциал — это заменить магниевый анод на электрод из алюминия.

Почему горячая вода из бойлера пахнет сероводородом

Через какое-то время вода из бойлера может начать жутко вонять сероводородом. Причина — в размножении бактерий в баке водонагревателя. Особенно часто это происходит, если вода в водопровод подается из местной скважины или колодца. Вода из городского водопровода обычно специально готовится, сильно обеззараживается, хлорируется, и с ней такие случаи бывают редко.

Большие количества газа сероводорода (H2S) выделяются и накапливаются в результате жизнедеятельности сульфатредуцирующих (сульфатвосстанавливающих) бактерий в воде.

Сульфатредуцирующие бактерии используют органические вещества (CH2O) или водород (H) в качестве донора электрона и сульфат (SO4) в качестве акцептора электрона при получении энергии

2CH2O + SO42- + 2H+ => 2CO2 + H2S + 2H2O

Проще говоря, существует две разновидности сульфатредуцирующих бактерий. Обеим разновидностям для жизнедеятельности необходимы сульфаты — соединения серы, а также водород. Но одна разновидность бактерий добывает водород из органических веществ в иле. Другие бактерии используют молекулярный водород, который находят в воде.

Важно — развитие сульфатредуцирующих бактерий происходит в анаэробных условиях, при отсутствии свободного кислорода в воде.

Сульфа́ты — соли серной кислоты H2SO4 ,например, сульфат калия K2SO4 , гидросульфат натрия NaHSO4 . Сульфаты широко распространены в природе, образуя целую группу минералов. Многие сульфаты растворимы в воде и входят в состав природной воды.

Чем опасен сероводород

Сероводород (H2S) плохо растворим в воде. Огнеопасен. Концентрационные пределы воспламенения в смеси с воздухом составляют 4,5—45 % сероводорода.

Сероводород очень токсичен. Вдыхание воздуха с небольшим содержанием сероводорода вызывает головокружение, головную боль, тошноту, а со значительной концентрацией приводит к коме, судорогам, отёку лёгких и даже к летальному исходу. При высокой концентрации однократное вдыхание может вызвать мгновенную смерть. При вдыхании воздуха с небольшими концентрациями у человека довольно быстро возникает адаптация к неприятному запаху «тухлых яиц» и он перестаёт ощущаться. Во рту возникает сладковатый металлический привкус.

При вдыхании воздуха с большой концентрацией из-за паралича обонятельного нерва запах сероводорода почти сразу перестаёт ощущаться. Сероводород также используют в лечебных целях, например в сероводородных ваннах.

Появление сероводорода в воде бойлера — это не только неприятный запах и опасность для здоровья. Раствор сероводорода в воде — очень слабая сероводородная кислота. Сероводород превращает воду в баке бойлера в кислоту, пусть и очень слабую. Увеличение кислотности воды ускоряет электрохимическое растворение магниевого анода протекторной защиты от коррозии.

Две причины запаха сероводорода из воды бойлера

Одна причина запаха

Питательной средой для некоторых разновидностей сульфатредуцирующих бактерий служит ил, который содержит органические соединения. Такие бактерии можно найти в природе, например, в отложениях ила на дне болот, озер. Или в искусственных сооружениях — в септике канализации, например. Или на дне колодца, или накопительного бака с водой, если там скапливаются органические загрязнения.

В баке бойлера со временем из воды оседает и накапливается слой ила, который может стать средой обитания сульфатредуцирующих бактерий.

Увеличьте температуру воды в бойлере до максимума, выше 70 оС и попользуйтесь горячей водой дня три. Микроорганизмы при такой температуре должны погибнуть, а накопленный в иле сероводород за это время уйдет с водой из бака. Если запах сероводорода исчез, то скорее всего причина запаха в деятельности бактерий, которые живут в слое ила.

Другая причина запаха

Другие разновидности бактерий живут в воде. Для жизнедеятельности, таким бактериям, необходим молекулярный водород. Некоторые из них живут в природных источниках термальной воды при температуре +110 оС.

В баке водонагревателя молекулярный водород особенно интенсивно выделяется, если протекторная защита от коррозии работает в режиме «перезащиты» (подробнее о «перезащите» читайте в статье выше).

Если в баке водонагревателя вода содержит достаточно большое количество сульфатов, и протекторная защита работает в режиме «перезащита», с интенсивным выделением водорода, то создаются условия для активного размножения сульфатредуцирующих бактерий в воде.

Определить причину не сложно – выньте протекторный анод из бака и включите водонагреватель в работу без анода. Если вода перестала отдавать тухлыми яйцами – причина найдена.

Способы устранения запаха сероводорода из воды бойлера

В баке водонагревателя могут присутствовать сульфатредуцирующие бактерии как в иле, так и в воде, одновременно. Но обычно, наиболее активной является какая-то одна разновидность бактерий. В зависимости от того, какая разновидность сульфатвосстанавливающих бактерий в баке бойлера является причиной запаха сероводорода, выбирают и способ избавления от запаха.

Устранение бактерий, которые живут в слое ила

Бывает достаточно выполнить хотя бы одно из следующих мероприятий:

  • Проще всего поднять температуру воды выше 70 оС и попользоваться такой водой суток трое, до исчезновения запаха. В дальнейшем постоянно держать температуру воды в бойлере выше 55 оС. Периодически рекомендуется повышать температуру выше 70 оС.
  • Регулярно проводить чистку бойлера от накипи и отложений ила на дне.
  • Принять меры по снижению количества органических загрязнений в водопроводной воде. Для этого можно изменить горизонт забора воды — вместо колодца брать воду из скважины или углубить скважину. Установить фильтры по очистке водопроводной воды от механических и органических загрязнений.

Устранение бактерий из воды бойлера

Для подавления сульфатредуцирующих бактерий, живущих в воде бойлера, бывает достаточно выполнить:

  • Попробуйте поднять температуру воды выше 70 оС и попользоваться такой водой суток трое, до исчезновения запаха. В дальнейшем постоянно держать температуру воды в бойлере выше 55 оС. Периодически рекомендуется повышать температуру выше 70 оС. Но этот способ помогает не всегда. Бактерии, живущие в воде бойлера, часто бывают устойчивы к таким температурам.
  • Активность сульфатвосстанавливающих бактерий подавляется если снизить содержание молекулярного водорода в воде. Для этого, оптимизируют режим работы протекторной защиты. Замена магниевого анода на алюминиевый, исключает «перезащиту», что снижает содержание водорода в воде. О замене анодов читайте в начале этой статьи.

Общие меры борьбы с бактериями в бойлере

Следующие меры способны подавить развитие бактерий как в воде, так и в иле:

  • Аэрация, насыщение воздухом, водопроводной воды приводит к увеличению содержания в воде свободного кислорода. В результате, анаэробная среда обитания бактерий меняется на менее благоприятную для их жизни.
  • Водопроводную воду обеззараживать способами, антибактериальное действие которых сохраняется длительное время после обработки — хлорирование и т.п. Обработка воды ультрафиолетом для этого не подходит.
  • Принять меры по снижению количества растворимых соединений серы в водопроводной воде. Для этого можно изменить горизонт забора воды — вместо колодца брать воду из скважины или углубить скважину. Эти меры следует выбирать после анализа источника воды на содержание сульфатов.

Еще статьи на эту тему:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *