Опубликовано

555 микросхема аналог

РЕГУЛЯТОР МОЩНОСТИ НА КР1006ВИ1

Рассказать в:
В статье рассмотрен вариант построения регулятора мощности с широтноимпульсным управлением на основе таймера КР1006ВИ1. Благодаря своей «гибкости» эта микросхема успешно работает и в регуляторе мощности. Мощность выходного сигнала микросхемы КР1006ВИ1 достаточна для непосредственного управления такими тринисторами, у которых открывающий ток не превышает 200 мА. Кроме того, в составе таймера — два компаратора и RS-триггер, что дает возможность простыми средствами обеспечить режим управления, приближающийся к наиболее экономичному — импульсному, когда открывающий ток спадает до нуля сразу после открывания тринистора. С описанием таймера можно ознакомиться в .
Рассмотрим исходную функциональную схему включения таймера, изображенную на рис. 1 ,а. Здесь передаточная характеристика прибора имеет гистерезисный вид (рис. 1,б). Ширину гистерезиса (точнее, верхнее пороговое напряжение) можно изменять в широких пределах переменным резистором R1. Следует учитывать, что уровни переключения напрямую зависят от напряжения источника питания (5…15 В). На рис. 2 показана схема узла с таймером DA1, непосредственно управляющим тринистором VS1, а на рис. 3 — временные диаграммы, ил- люстрирующие его работу (они, кроме последней, сняты относительно минусового вывода диодного моста VD2). Управляющий сигнал подают на вход Е таймера, хорошо согласующийся с выходом многих цифровых микросхем, в том числе с открытым коллектором. Вытекающий ток низкого уровня — около 0,5 мА. Пока напряжение на управляющем входе таймера не превышает 0,3…0,4 В, на ее выходе (вывод 3) — сигнал низкого уровня. Поэтому трини-стор VS1 закрыт, и нагрузка в его анодной цепи обесточена. При входном напряжении более 1 В таймер формирует на выходе импульсы амплитудой не менее 3,8 В (при Uпит=5 В), следующие с частотой 100 Гц. Длительность этих импульсов определяется положением движка подстроечного резистора R1 и сопротивлением резистора R2. Пульсирующее напряжение с диодного моста VD2 поступает через делитель R2R1 на вход внутреннего компаратора таймера. Диод VD1 ограничивает напряжение на этом входе до уровня Uпит+0,6 В. Как только напряжение на входе S уменьшится до Uпит/3 (см. диагр. 2 на рис. 3), внутренний RS-триггер переключится в единичное состояние, и на выходе таймера возникнет импульс высокого уровня, который откроет тринистор и включит нагрузку. После того, как напряжение на входе R, пройдя через «нуль» и вновь увеличиваясь, достигнет уровня 2U пит/3, напряжение, поступающее на управляющий электрод тринистора, снизится до нуля, но он останется открытым. При очередном переходе сетевого напряжения через «нуль» тринистор закроется и обесточит нагрузку. Минимальную длительность импульса на выходе таймера, необходимую для открывания тринистора, устанавливают подстроечным резистором R1. Длительность управляющего импульса при верхнем по схеме положении движка резистора R1 равна 0,2 мс. Максимальная длительность импульса, при которой устройство работает устойчиво, — около 2 мс. При указанных на схеме номиналах резисторов R1 и R2 узел работоспособен при напряжении питания микросхемы более 6 В. Если сопротивление резистора R1 уменьшить до 220 кОм, минимальное напряжение питания снизится до 4 В. Несмотря на то что в описанном узле принцип импульсного управления тринистором реализован не в полной мере и формируемый импульс шире минимально необходимого, этот режим существенно экономичнее по сравнению с управлением постоянным током. Так, средний управляющий ток тринистора КУ202Н при указанном на схеме сопротивлении резистора R3 близок к 1 мА, тогда как для открывания того же тринистора постоянным током необходимо 10…20 мА. Собственный же потребляемый таймером ток при напряжении питания 5 В не превышает 3 мА. Удобство узла управления на таймере КР1006ВИ1 проявляется еще и в простоте его схемы. Довольно большая мощность на выходе микросхемы позволяет отказаться от дополнительного транзисторного усилителя управляющего тока тринистора. Отметим также, что описанный узел обеспечивает регулирование мощности без помех. Рассмотренный принцип практически применен при разработке регулятора мощности, принципиальная схема

которого показана на рис. 4. Устройство реализует широтно-импульсный способ управления. В результате, в зависимости от установленной мощности, в нагрузку поступает то или иное число целых полупериодов сетевого напряжения. Регулятор предназначен для работы с инерционными нагревательными приборами, паяльниками и т. п. Регулировать яркость ламп накаливания этим устройством нельзя, так как они будут мигать. Формирование управляющих импульсов для открывания тринистора выполняет таймер DA2, а сигнал, разрешающий его работу, формирует генератор прямоугольных импульсов на таймере DA1. Частота импульсов — около 5 Гц. Скважность, от которой зависит мощность, потребляемая нагрузкой, можно изменять переменным резистором R1. При крайнем левом по схеме положении его движка нагрузка будет отключена, а при крайнем правом — включена на полную мощность. Когда на выходе таймера DA1 присутствует напряжение высокого уровня, в нагрузку поступает пульсирующее напряжение частотой 100 Гц с выпрямителя VD5. Если же на выходе таймера низкий уровень, тринистор VS1 закрыт и напряжение на нагрузку не поступает. Микросхемы питаются от параметрического стабилизатора напряжения R6R7VD3. Регулятор собран на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм. Чертеж платы представлен на рис. 5.

Диоды КД522Б заменимы на КД522А или любые из серии КД521. Диодный мост — любой из КЦ405А— КЦ405В. Если мощность нагрузки превышает 200 Вт, мост должен быть собран из более мощных диодов, напри- мер, из четырех КД202 с буквенными индексами Ж, К, М, Р. Тринистор VS1 может быть либо КУ201К, КУ201Л (для маломощной нагрузки), либо КУ202К—КУ202Н. Если во время работы тринистор будет сильно нагреваться, его необходимо установить на теплоотвод. Переменный резистор — СП-1. Следует заметить, что отдельные экземпляры тринисторов серии КУ202 в регуляторе могут работать нечетко, особенно при пониженной температуре. Такие тринисторы нужно заменить на другие, с меньшим значением тока открывания. Выход регулятора мощности гальванически связан с сетью, поэтому при его налаживании и эксплуатации необходимо соблюдать осторожность. ЛИТЕРАТУРА 1. Пецюх Е., Казарец А. Интегральный таймер КР1006ВИ1. — Радио, 1986, № 7, с. 57, 58. 2. Зельдин Е. Применение таймера КР1006ВИ1. — Радио, 1986, № 9, с. 36, 37. 3. Хоровиц П., Хилл У. Искусство схемотехники. — М.: Мир, 1993, т. 1,с. 303—307. 4. Коломбет Е. А. Микроэлектронные средства обработки аналоговых сигналов. — М.: Радио и связь, 1991, с. 181—220. 5. Горошков В. И. Элементы радиоэлектронных устройств. — М.: Радио и связь, 1989, с. 118, 119. 6. Шитов А. Генераторы на таймере КР1006ВИ1. — Радио, 1999, № 8, с. 54, 55.

Раздел:

Сохрани статью в:

Микросхема КР1006ВИ1 по сути своей является достаточно простым, но в то же время многофункциональным интегральным таймером, достаточно широко используется в различных радиоэлектронных конструкциях. Она является отечественным аналогом NE555. Далее в статье будет изложено описание основных параметров таймера КР1006ВИ1 и примеры применения.

Описание таймера КР1006ВИ1

  • Контакт №1 — Земля. Вывод соединяется с общим проводом схемы или минусом источника питания.
  • Контакт №2 – Запуск. Данный вывод соединен с входом компаратора D2. При поступлении на данный вход сигнала логический ноль, величина которого не должна превышать 30% от напряжения питания, осуществляется пуск интегрального таймера КР1006ВИ1, вследствие чего на его выходе 3 возникает логическая единица.
  • Контакт №3 – Выход. Уровень лог.1 примерно равен Uпит. – 1,7 вольта, а лог.0 = 0,25 вольта. Время переключения из одного состояния в другое составляет в районе 0,1мкс.
  • Контакт №4 — Сброс. При поступлении на данный вывод напряжения лог.0 (не больше 0,7в) совершается сброс таймера, и поэтому на выводе 3 появляется напряжение низкого уровня. Если в проектируемой схеме нет надобности в режиме сброса, то желательно данный вывод 4 соединить с плюсом источника питания.
  • Контакт №5 — Контроль. Как правило, данный вывод не применяется. Хотя его использование может существенно увеличить функциональность таймера. В частности, при подаче на этот вход сигнала от 45 до 90% от напряжения питания (в моностабильном мультивибраторе) и от 1,7 вольта до Uпит. (в мультивибраторе), можно контролировать продолжительностью импульсов на выходе. Это позволяет избавиться от внешней RC цепи. Если в этом нет надобности, то его необходимо подключить к минусу схемы через конденсатор 10нФ.
  • Контакт №6 — Стоп. Данный вывод соединен с входом компаратора D1. Подавая на данный вывод лог.1 можно остановить работу КР1006ВИ1, и при этом на выходе 3 будет лог.0.
  • Контакт №7 — Разряд. Данный вывод подсоединен к коллектору транзистора VТ1, эмиттер же его подсоединен с минусом питания. Транзистор открыт, в тот момент, когда на выходе таймера низкий уровень, и закрыт, когда на выходе высокий уровень.
  • Контакт №8 — Питание. Питание КР1006ВИ1 осуществляется от 4,5 до16 вольт.

Описание и область применения

NE555 является разработкой американской компании Signetics, специалисты которой в условиях экономического кризиса не сдались и смогли воплотить в жизнь труды Ганса Камензинда. Именно он в 1970 году сумел доказать важность своего изобретения, которое на тот момент не имело аналогов. ИМС NE555 имела высокую плотность монтажа при низкой себестоимости, чем заслужила особый статус.

Впоследствии её стали копировать конкурирующие производители из разных стран мира. Так появилась отечественная КР1006ВИ1, которая так и осталась уникальной в данном семействе. Дело в том, что в КР1006ВИ1 вход останова (6) имеет приоритет над входом запуска (2). В импортных аналогах других фирм такая особенность отсутствует. Данный факт следует учитывать при разработке схем с активным использованием двух входов.

Однако в большинстве случаев приоритеты не влияют на работу устройства. С целью снижения мощности потребления, ещё в 70-х годах прошлого века был налажен выпуск таймера КМОП-серии. В России микросхема на полевых транзисторах получила название КР1441ВИ1.

Наибольшее применение 555 таймер нашёл в построении схем генераторов и реле времени с возможностью задержки от микросекунд до нескольких часов. В более сложных устройствах он выполняет функции по исключению дребезга контактов, ШИМ, восстановлению цифрового сигнала и так далее.

Основные параметры ИМС серии 555

Внутреннее устройство NE555 включает в себя пять функциональных узлов, которые можно видеть на логической диаграмме. На входе расположен резистивный делитель напряжения, который формирует два опорных напряжения для прецизионных компараторов. Выходные контакты компараторов поступают на следующий блок – RS-триггер с внешним выводом для сброса, а затем на усилитель мощности. Последним узлом является транзистор с открытым коллектором, который может выполнять несколько функций, в зависимости от поставленной задачи.

Рекомендуемое напряжение питания для ИМС типа NA, NE, SA лежит в интервале от 4,5 до 16 вольт, а для SE может достигать 18В. При этом ток потребления при минимальном Uпит равен 2–5 мА, при максимальном Uпит – 10–15 мА. Некоторые ИМС 555 КМОП-серии потребляют не более 1 мА. Наибольший выходной ток импортной микросхемы может достигать значения в 200 мА. Для КР1006ВИ1 он не выше 100 мА.

Качество сборки и производитель сильно влияют на условия эксплуатации таймера. Например, диапазон рабочих температур NE555 составляет от 0 до 70°C, а SE555 от -55 до +125°C, что важно знать при конструировании устройств для работы в открытой окружающей среде. Более детально ознакомиться с электрическими параметрами, узнать типовые значения напряжения и тока на входах CONT, RESET, THRES, и TRIG можно в datasheet на ИМС серии XX555.

Расположение и назначение выводов

NE555 и её аналоги преимущественно выпускаются в восьмивыводном корпусе типа PDIP8, TSSOP или SOIC. Расположение выводов независимо от корпуса – стандартное. Условное графическое обозначение таймера представляет собой прямоугольник с надписью G1 (для генератора одиночных импульсов) и GN (для мультивибраторов).

  1. Общий (GND). Первый вывод относительно ключа. Подключается к минусу питания устройства.
  2. Запуск (TRIG). Подача импульса низкого уровня на вход второго компаратора приводит к запуску и появлению на выходе сигнала высокого уровня, длительность которого зависит от номинала внешних элементов R и С. О возможных вариациях входного сигнала написано в разделе «Одновибратор».
  3. Выход (OUT). Высокий уровень выходного сигнала равен (Uпит-1,5В), а низкий – около 0,25В. Переключение занимает около 0,1 мкс.
  4. Сброс (RESET). Данный вход имеет наивысший приоритет и способен управлять работой таймера независимо от напряжения на остальных выводах. Для разрешения запуска необходимо, чтобы на нём присутствовал потенциал более 0,7 вольт. По этой причине его через резистор соединяют с питанием схемы. Появление импульса менее 0,7 вольт запрещает работу NE555.
  5. Контроль (CTRL). Как видно из внутреннего устройства ИМС он напрямую соединен с делителем напряжения и в отсутствие внешнего воздействия выдаёт 2/3 Uпит. Подавая на CTRL управляющий сигнал, можно получить на выходе модулированный сигнал. В простых схемах он подключается к внешнему конденсатору.
  6. Останов (THR). Является входом первого компаратора, появление на котором напряжения более 2/3Uпит останавливает работу триггера и переводит выход таймера в низкий уровень. При этом на выводе 2 должен отсутствовать запускающий сигнал, так как TRIG имеет приоритет перед THR (кроме КР1006ВИ1).
  7. Разряд (DIS). Соединен напрямую с внутренним транзистором, который включен по схеме с общим коллектором. Обычно к переходу коллектор-эмиттер подключают времязадающий конденсатор, который разряжается, пока транзистор находится в открытом состоянии. Реже используется для наращивания нагрузочной способности таймера.
  8. Питание (VCC). Подключается к плюсу источника питания 4,5–16В.

Режимы работы NE555

Таймер 555 серии работает в одном из трёх режимов, рассмотрим их более детально на примере микросхемы NE555.

Одновибратор

Принципиальная электрическая схема одновибратора приведена на рисунке. Для формирования одиночных импульсов, кроме микросхемы NE555, понадобится сопротивление и полярный конденсатор. Схема работает следующим образом. На вход таймера (2) подают одиночный импульс низкого уровня, который приводит к переключению микросхемы и появлению на выходе (3) высокого уровня сигнала. Продолжительность сигнала рассчитывается в секундах по формуле:

t=1,1*R*C.

По истечении заданного времени (t) на выходе формируется сигнал низкого уровня (исходное состояние). По умолчанию вывод 4 объединен с выводом 8, то есть имеет высокий потенциал.

Во время разработки схем нужно учесть 2 нюанса:

  1. Напряжение источника питания не влияет на длительность импульсов. Чем больше напряжение питания, тем выше скорость заряда времязадающего конденсатора и тем больше амплитуда выходного сигнала.
  2. Дополнительный импульс, который можно подать на вход после основного, не повлияет на работу таймера, пока не истечет время t.

На работу генератора одиночных импульсов можно влиять извне двумя способами:

  • подать на Reset сигнал низкого уровня, который переведёт таймер в исходное состояние;
  • пока на вход 2 поступает сигнал низкого уровня, на выходе будет оставаться высокий потенциал.

Таким образом, с помощью одиночных сигналов на входе и параметров времязадающей цепочки можно получать на выходе импульсы прямоугольной формы с чётко заданной длительностью.

Мультивибратор

Мультивибратор представляет собой генератор периодических импульсов прямоугольной формы с заданной амплитудой, длительностью или частотой, в зависимости от поставленной задачи. Его отличие от одновибратора состоит в отсутствии внешнего возмущающего воздействия для нормального функционирования устройства. Принципиальная схема мультивибратора на базе NE555 показана на рисунке.

В формировании повторяющихся импульсов участвуют резисторы R1, R2 и конденсатор С1. Время импульса (t1), время паузы(t2), период (T) и частоту (f) рассчитывают по нижеприведенным формулам: Из данных формул несложно заметить, что время паузы не сможет превысить время импульса, то есть достичь скважности (S=T/t1) более 2 единиц не удастся. Для решения проблемы в схему добавляют диод, катод которого соединяют с выводом 6, а анод с выводом 7.

В datasheet на микросхемы часто оперируют величиной, обратной скважности — Duty cycle (D=1/S), которую отображают в процентах.

Схема работает следующим образом. В момент подачи питания конденсатор С1 разряжен, что переводит выход таймера в состояние высокого уровня. Затем С1 начинает заряжаться, набирая ёмкость до верхнего порогового значения 2/3 UПИТ. Достигнув порога ИМС переключается, и на выходе появляется низкий уровень сигнала. Начинается процесс разряда конденсатора (t1), который продолжается до нижнего порогового значения 1/3 UПИТ. По его достижении происходит обратное переключение, и на выходе таймера устанавливается высокий уровень сигнала. В результате схема переходит в автоколебательный режим.

Прецизионный триггер Шмитта с RS-триггером

Внутри таймера NE555 встроен двухпопроговый компаратор и RS-триггер, что позволяет реализовывать прецизионный триггер Шмитта с RS-триггером на аппаратном уровне. Входное напряжение делится компаратором на три части, при достижении каждой из которых происходит очередное переключение. При этом величина гистерезиса (обратного переключения) равна 1/3 UПИТ. Возможность применения NE555 в качестве прецизионного триггера востребована в построении систем автоматического регулирования.

3 наиболее популярные схемы на основе NE555

Практический вариант схемы одновибратора на TTL NE555 приведен на рисунке. Схема питается однополярным напряжением от 5 до 15В. Времязадающими элементами здесь являются: резистор R1 – 200кОм-0,125Вт и электролитический конденсатор С1 – 4,7мкФ-16В. R2 поддерживает на входе высокий потенциал, пока некоторое внешнее устройство не сбросит его до низкого уровня (например, транзисторный ключ). Конденсатор С2 защищает схему от сквозных токов в моменты переключения.

Активизация одновибратора происходит в момент кратковременного замыкания на землю входного контакта. При этом на выходе формируется высокий уровень длительностью:

t=1,1*R1*C1=1,1*200000*0,0000047=1,03 c.

Таким образом, данная схема формирует задержку выходного сигнала относительно входного на 1 секунду.

Мигание светодиодом на мультивибраторе

Отталкиваясь от рассмотренной выше схемы мультивибратора можно собрать простую светодиодную мигалку. Для этого к выходу таймера последовательно с резистором подключают светодиод. Номинал резистора находят по формуле:

R=(UВЫХ-ULED)/ILED,

UВЫХ – амплитудное значение напряжения на выводе 3 таймера.

Количество подключаемых светодиодов зависит от типа применяемой микросхемы NE555, её нагрузочной способности (КМОП или ТТЛ). Если необходимо мигать светодиодом мощностью более 0,5 Вт, то схему дополняют транзистором, нагрузкой которого станет светодиод.

Реле времени

Схема регулируемого таймера (электронное реле времени) показана на рисунке. С её помощью можно вручную задавать длительность выходного сигнала от 1 до 25 секунд. Для этого последовательно с постоянным резистором в 10 кОм устанавливают переменный номиналом в 250 кОм. Ёмкость времязадающего конденсатора увеличивают до 100 мкФ.

Схема работает следующим образом. В исходном состоянии на выводе 2 присутствует высокий уровень (от источника питания), а на выводе 3 низкий уровень. Транзисторы VT1, VT2 закрыты. В момент подачи на базу VT1 положительного импульса по цепи (Vcc-R2-коллектор-эмиттер-общий провод) протекает ток. VT1 открывается и переводит NE555 в режим отсчета времени. Одновременно на выходе ИМС появляется положительный импульс, который открывает VT2. В результате ток эмиттера VT2 приводит к срабатыванию реле. Пользователь может в любой момент прервать выполнение задачи, кратковременно закоротив RESET на землю.

Транзисторы SS8050, приведенные на схеме, можно заменить на КТ3102.

Рассмотреть все популярные схемы на основе NE555 в одной статье невозможно. Для этого существуют целые сборники, в которых собраны практические наработки за всё время существования таймера. Надеемся, что приведенная информация послужит ориентиром во время сборки схем, в том числе нагрузкой которых служат светодиоды.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *