Опубликовано

3 закон ома

Закон Ома в дифференциальной форме

Поиск Лекций

12

Применение

Отличительными чертами сегнетоэлектриков являются также высокие значения диэлектрической проницаемости, наличие пьезоэлектрического и пироэлектрического эффектов, зависимость показателя преломления от величины приложенного электрического поля. Эти свойства определяют область применения сегнетоэлектриков — в конденсаторах, пьезоэлектрических устройствах, электрооптических системах, нелинейной оптике, различных температурных датчиках.

12. Электрический ток — упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил. .

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.

Условия существования постоянного электрического тока.

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Основные понятия.

Сила тока — скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

Плотность тока — векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

Напряжение — скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

Электрическое сопротивление — физическая величина, характеризующая электрические свойства участка цепи

.

Проводимостью называется величина, обратная сопротивлению

13. Закон Ома для однородного участка цепи: сила тока I в проводнике, находящемся в электростатическом поле, пропорциональна напряжению между концами проводника:

,

где – сопротивление проводника, ρ – удельное сопротивление, l – длина проводника.

Удельное сопротивление ρ зависит от температуры, для металлов эта зависимость имеет вид:

,

где ρ0 – удельное сопротивление при t = 0oC, α – температурный коэффициент сопротивления.

Сопротивление R, участка цепи состоящего из последовательно соединенных проводников равно сумме сопротивлений этих проводников:

.

При параллельном соединении проводников электропроводность цепи R-1, равна сумме электропроводностей этих проводников:

.

Закон Ома для замкнутой цепи: сила тока I в замкнутой цепи, состоящей из источника тока с ЭДС ε и внутренним сопротивлением r и нагрузки с сопротивлением R, равна отношению величины ЭДС к сумме внутреннего сопротивления источника и сопротивления нагрузки:

.

Закон Ома для неоднородного участка цепи (обобщенный закон Ома)

.

Закон Ома в дифференциальной форме

,

где γ – удельная проводимость.

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура

14.Закон Джоуля-Ленца:

где – количество теплоты, выделяющееся на участке цепи с сопротивлением R за время .

Зако́н Видема́на — Фра́нца — это физический закон, утверждающий, что для металлов отношение коэффициента теплопроводности (либо тензора теплопроводности) K к удельной электрической проводимости (либо тензору проводимости) σ пропорционально температуре:

15. Первое правило Кирхгофа (правило узлов): алгебраическая сумма сил токов, сходящихся в узле равна нулю:

.

Второе правило Кирхгофа (правило контуров): в любом замкнутом контуре, произвольно выбранном в разветвленной цепи, алгебраическая сумма падений напряжений на отдельных участках цепи, равна алгебраической сумме ЭДС встречающихся в этом контуре:

.

Применяя правила Кирхгофа, следует помнить, что число уравнений записываемых при помощи первого правила должно быть , где n – число узлов в разветвленной цепи, причем направления токов в ветвях расставляются произвольным образом, при этом положительными считаются токи, втекающие в узел, отрицательными – токи, вытекающие их узла. Применяя второе правило, обходя контур в произвольном направлении, будем считать положительными те токи, направления которых совпадают с направлением обхода, и отрицательными те, направления которых противоположны направлению обхода. Положительными ЭДС считаются те, которые повышают потенциал в направлении обхода, т. е. ЭДС будет положительной, если при обходе придется идти от минуса к плюсу внутри генератора.

16. Элементарная классическая теория электропроводности металлов

Носителями тока в металлах являются свободные электроны, т.е. электроны слабо связанные с ионами кристаллической решетки металла. Наличие свободных электронов объясняется тем, что при образовании кристаллической решетки металла при сближении изолированных атомов валентные электроны, слабо связанные с атомными ядрами, отрываются от атома металла, становятся «свободными», обобществленными, принадлежащими не отдельному атому, а всему веществу, и могут перемещаться по всему объему. В классической электронной теории эти электроны рассматриваются как электронный газ, обладающий свойствами одноатомного идеального газа.

Электроны проводимости в отсутствии электрического поля внутри металла хаотически двигаются и сталкиваются с ионами кристаллической решетки металла. Тепловое движение электронов, являясь хаотическим, не может, привести к возникновению тока.

17. Границы применимости закона Ома

После всего сказанного о законе Ома уместно поставить вопрос, во всех ли случаях он выполняется? Всегда ли зависимость плотности тока от напряженности электрического поля будет линейной? Трудно сказать — к сожалению или к счастью, но ответ на этот вопрос будет отрицательным. Случаев отклонения от закона Ома достаточно много.

При некоторых значениях напряженности электрического поля, созданного в газах, перемещающаяся заряженная частица может приобрести такую энергию, которой достаточно для того, чтобы вызвать вторичную ионизацию молекул. Число носителей зарядов при этом возрастает, удельная электропроводность изменяется. Вследствие этого пропорциональность между плотностью тока и напряженностью электрического поля нарушается. Отклонение от пропорциональности наблюдается и при искровом разряде в газах. Оба эти случая означают явное нарушение закона Ома.

Не подчиняется закону Ома и ток в электронных лампах, ток через контакт между двумя полупроводниками или полупроводником и металлом. Катастрофическим нарушением закона Ома является ток в сверхпроводниках: о зависимости силы тока от напряжения в этом случае говорить не приходится. Следовательно, закон Ома не является фундаментальным законом природы.

Но если бы закон Ома выполнялся во всех случаях прохождения тока через вещество, то электроника, построенная на нелинейной зависимости тока от напряжения, перестала бы существовать. А в наше время автоматики и телемеханики вряд ли стоит доказывать значение этих разделов науки для промышленности, транспорта, связи.

Однако для металлов ни при каких условиях не удалось заметить отклонений от пропорциональности между плотностью тока и напряженностью электрического поля. Даже при плотностях тока 109 А/м2, что значительно выше обычной плотности в миллион раз, отклонение от закона Ома не будет превышать одного процента.

18.ЭЛЕКТРИЧЕСКИЙ ТОК В ГАЗАХ

В обычных условиях газ — это диэлектрик, т.е. он состоит из нейтральных атомов и молекул и не содержит свободных носителей эл.тока.

Газ-проводник — это ионизированный газ. Ионизированный газ обладает электронно-ионной проводимостью.

Воздух является диэлектриком в линиях электропередач, в воздушных конденсаторах, в контактных выключателях.

Воздух является проводником при возникновении молнии, электрической искры, при возникновении сварочной дуги.

Ионизация газа — это распад нейтральных атомов или молекул на положительные ионы и электроны путем отрыва электронов от атомов. Ионизация происходит при нагревании газа или воздействия излучений (УФ, рентген, радиоактивное) и объясняется распадом атомов и молекул при столкновениях на высоких скоростях.

Газовый разряд- это эл.ток в ионизированных газах. Носителями зарядов являются положительные ионы и электроны. Газовый разряд наблюдается в газоразрядных трубках (лампах) при воздействии электрического или магнитного поля.

Рекомбинация заряженных частиц — газ перестает быть проводником, если ионизация прекращается, это происходит в следствие рекомбинации ( воссоединения противоположно заряженных частиц).

Существует самостоятельный и несамостоятельный газовый разряд.

Несамостоятельный газовый разряд- если действие ионизатора прекратить , то прекратится и разряд.

Когда разряд достигает насыщения — график становится горизонтальным. Здесь электропроводность газа вызвана лишь действием ионизатора.

Самостоятельный газовый разряд — в этом случае газовый разряд продолжается и после прекращения действия внешнего ионизатора за счет ионов и электронов, возникших в результате ударной ионизации ( = ионизации эл. удара); возникает при увеличении разности потенциалов между электродами ( возникает электронная лавина).

Несамостоятельный газовый разряд может переходить в самостоятельный газовый разряд при Ua = Uзажигания.

Электрический пробой газа- процесс перехода несамостоятельного газового разряда в самостоятельный.

Самостоятельный газовый разряд бывает 4-х типов:

1. тлеющий — при низких давлениях(до нескольких мм рт.ст.) -наблюдается в газосветных трубках и газовых лазерах.

2. искровой — при нормальном давлении и высокой напряженности электрического поля (молния — сила тока до сотен тысяч ампер).

3. коронный — при нормальном давлении в неоднородном электрическом поле ( на острие ).

4. дуговой — большая плотность тока, малое напряжение между электродами ( температура газа в канале дуги -5000-6000 градусов Цельсия); наблюдается в прожекторах, проекционной киноаппаратуре.

Эти разряды наблюдаются:

тлеющий- в лампах дневного света;

искровой — в молниях;

коронный — в электрофильтрах, при утечке энергии;

дуговой — при сварке, в ртутных лампах.

Плазма — это четвертое агрегатное состояние вещества с высокой степенью ионизации за счет столкновения молекул на большой скорости при высокой температуре; встречается в природе: ионосфера — слабо ионизированная плазма, Солнце — полностью ионизированная плазма; искусственная плазма — в газоразрядных лампах.

19. Пла́зма— частично или полностью ионизированный газ, образованный из нейтральных атомов (или молекул) и заряженных частиц (ионов и электронов). Важнейшей особенностью плазмы является ее квазинейтральность, это означает, что объемные плотности положительных и отрицательных заряженных частиц, из которых она образована, оказываются почти одинаковыми. Плазма иногда называется четвёртым (после твёрдого, жидкого и газообразного) агрегатным состоянием вещества.

Достаточная плотность: заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления — типичное свойство плазмы).

Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на её поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной.

Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания. Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими.

Плазменная технология применяется в металлургии, химии, металлообрабатывающей промышленности, в промышленности строительных материалов, в электронике и космической технике.

20. Термоэлектро́нная эми́ссия— явление вырывания электронов из металла при высокой температуре. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растёт, и явление термоэлектронной эмиссии становится заметным.

Границы применимости закона Ома

После всего сказанного о законе Ома уместно поставить вопрос, во всех ли случаях он выполняется? Всегда ли зависимость плотности тока от напряженности электрического поля будет линейной? Трудно сказать — к сожалению или к счастью, но ответ на этот вопрос будет отрицательным. Случаев отклонения от закона Ома достаточно много.

При некоторых значениях напряженности электрического поля, созданного в газах, перемещающаяся заряженная частица может приобрести такую энергию, которой достаточно для того, чтобы вызвать вторичную ионизацию молекул. Число носителей зарядов при этом возрастает, удельная электропроводность изменяется. Вследствие этого пропорциональность между плотностью тока и напряженностью электрического поля нарушается. Отклонение от пропорциональности наблюдается и при искровом разряде в газах. Оба эти случая означают явное нарушение закона Ома.

Не подчиняется закону Ома и ток в электронных лампах, ток через контакт между двумя полупроводниками или полупроводником и металлом. Катастрофическим нарушением закона Ома является ток в сверхпроводниках: о зависимости силы тока от напряжения в этом случае говорить не приходится. Следовательно, закон Ома не является фундаментальным законом природы.

Но если бы закон Ома выполнялся во всех случаях прохождения тока через вещество, то электроника, построенная на нелинейной зависимости тока от напряжения, перестала бы существовать. А в наше время автоматики и телемеханики вряд ли стоит доказывать значение этих разделов науки для промышленности, транспорта, связи.

Однако для металлов ни при каких условиях не удалось заметить отклонений от пропорциональности между плотностью тока и напряженностью электрического поля. Даже при плотностях тока 109 А/м2, что значительно выше обычной плотности в миллион раз, отклонение от закона Ома не будет превышать одного процента.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *